ﻻ يوجد ملخص باللغة العربية
In the ferromagnetic phase of the q-state Potts model, switching on an external magnetic field induces confinement of the domain wall excitations. For the Ising model (q = 2) the spectrum consists of kink-antikink states which are the analogues of mesonic states in QCD, while for q = 3, depending on the sign of the field, the spectrum may also contain three-kink bound states which are the analogues of the baryons. In recent years the resulting hadron spectrum was described using several different approaches, such as quantum mechanics in the confining linear potential, WKB methods and also the Bethe-Salpeter equation. Here we compare the available predictions to numerical results from renormalization group improved truncated conformal space approach (RG-TCSA). While mesonic states in the Ising model have already been considered in a different truncated Hamiltonian approach, this is the first time that a precision numerical study is performed for the 3-state Potts model. We find that the semiclassical approach provides a very accurate description for the mesonic spectrum in all the parameter regime for weak magnetic field, while the low-energy expansion from the Bethe-Salpeter equation is only valid for very weak fields where it gives a slight improvement over the semiclassical results. In addition, we confirm the validity of the recent predictions for the baryon spectrum obtained from solving the quantum mechanical three-body problem.
The bootstrap determination of the geometrical correlation functions in the two-dimensional Potts model proposed in a paper [arXiv:1607.07224] was later shown in [arXiv:1809.02191] to be incorrect, the actual spectrum of the model being considerably
We extend a recent analysis of the $q$-states Potts model on an ensemble of random planar graphs with $pleqslant q$ allowed, equally weighted, spins on a connected boundary. In this paper we explore the $(q<4,pleqslant q)$ parameter space of finite-s
We revisit in this paper the problem of connectivity correlations in the Fortuin-Kasteleyn cluster representation of the two-dimensional $Q$-state Potts model conformal field theory. In a recent work [M. Picco, S. Ribault and R. Santachiara, SciPost
In this paper, we apply the form factor bootstrap approach to branch point twist fields in the $q$-state Potts model for $qleq 3$. For $q=3$ this is an integrable interacting quantum field theory with an internal discrete $mathbb{Z}_3$ symmetry and t
We study the spectrum of the scaling Lee-Yang model on a finite interval from two points of view: via a generalisation of the truncated conformal space approach to systems with boundaries, and via the boundary thermodynamic Bethe ansatz. This allows