ترغب بنشر مسار تعليمي؟ اضغط هنا

Depolarizing channel parameter estimation using noisy initial states

158   0   0.0 ( 0 )
 نشر من قبل David Collins
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider estimating the parameter associated with the qubit depolarizing channel when the available initial states that might be employed are mixed. We use quantum Fisher information as a measure of the accuracy of estimation to compare protocols which use collections of qubits in product states to one in which the qubits are in a correlated state. We show that, for certain parameter values and initial states, the correlated state protocol can yield a greater accuracy per channel invocation than the product state protocols. We show that, for some parameters and initial states, using more than two qubits and channel invocations is advantageous. These results stand in contrast to the known optimal case that uses pure initial states and a single channel invocation on a pair of entangled qubits.



قيم البحث

اقرأ أيضاً

57 - Masahide Sasaki 2002
We investigate strategies for estimating a depolarizing channel for a finite dimensional system. Our analysis addresses the double optimization problem of selecting the best input probe state and the measurement strategy that minimizes the Bayes cost of a quadratic function. In the qubit case, we derive the Bayes optimal strategy for any finite number of input probe particles when bipartite entanglement can be formed in the probe particles.
77 - David Collins 2017
We consider an arbitrary qubit channel depending on a single parameter, which is to be estimated by a physical process. Using the quantum Fisher information per channel invocation to quantify the estimation accuracy, we consider various estimation pr otocols when the available initial states are mixed with very low purity. We compare a protocol using a single channel invocation on one out of $n$ qubits prepared in a particular correlated input state to the optimal protocol using uncorrelated input states, with the same initial state purity. We show that, to lowest order in initial-state purity, for a unital channel this correlated state protocol enhances the estimation accuracy by a factor between $n-1$ and $n.$ We also show that to lowest order in initial-state purity, a broad class of non-unital channels yields no gain regardless of the input state.
Bayesian analysis is a framework for parameter estimation that applies even in uncertainty regimes where the commonly used local (frequentist) analysis based on the Cramer-Rao bound is not well defined. In particular, it applies when no initial infor mation about the parameter value is available, e.g., when few measurements are performed. Here, we consider three paradigmatic estimation schemes in continuous-variable quantum metrology (estimation of displacements, phases, and squeezing strengths) and analyse them from the Bayesian perspective. For each of these scenarios, we investigate the precision achievable with single-mode Gaussian states under homodyne and heterodyne detection. This allows us to identify Bayesian estimation strategies that combine good performance with the potential for straightforward experimental realization in terms of Gaussian states and measurements. Our results provide practical solutions for reaching uncertainties where local estimation techniques apply, thus bridging the gap to regimes where asymptotically optimal strategies can be employed.
126 - David Collins 2012
The accuracy of any physical scheme used to estimate the parameter describing the strength of a single qubit Pauli channel can be quantified using standard techniques from quantum estimation theory. It is known that the optimal estimation scheme, wit h m channel invocations, uses initial states for the systems which are pure and unentangled and provides an uncertainty of O[1/m^(1/2)]. This protocol is analogous to a classical repetition and averaging scheme. We consider estimation schemes where the initial states available are not pure and compare a protocol involving quantum correlated states to independent state protocols analogous to classical repetition schemes. We show, that unlike the pure state case, the quantum correlated state protocol can yield greater estimation accuracy than any independent state protocol. We show that these gains persist even when the system states are separable and, in some cases, when quantum discord is absent after channel invocation. We describe the relevance of these protocols to nuclear magnetic resonance measurements.
133 - Olivier Pinel , Pu Jian 2013
We calculate the quantum Cramer--Rao bound for the sensitivity with which one or several parameters, encoded in a general single-mode Gaussian state, can be estimated. This includes in particular the interesting case of mixed Gaussian states. We appl y the formula to the problems of estimating phase, purity, loss, amplitude, and squeezing. In the case of the simultaneous measurement of several parameters, we provide the full quantum Fisher information matrix. Our results unify previously known partial results, and constitute a complete solution to the problem of knowing the best possible sensitivity of measurements based on a single-mode Gaussian state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا