ﻻ يوجد ملخص باللغة العربية
PSR J1846-0258 is an object which straddles the boundary between magnetars and rotation powered pulsars. Though behaving for many years as a rotation-powered pulsar, in 2006, it exhibited distinctly magnetar-like behavior - emitting several short hard X-ray bursts, and a flux increase. Here we report on 7 years of post-outburst timing observations of PSR J1846-0258 using the Rossi X-ray Timing Explorer and the Swift X-ray Telescope. We measure the braking index over the post-magnetar outburst period to be $n=2.19pm0.03$. This represents a change of $Delta n=-0.46pm0.03$ or a 14.5$;sigma$ difference from the pre-outburst braking index of $n=2.65pm0.01$, which itself was measured over a span of 6.5 yr. So large and long-lived a change to a pulsar braking index is unprecedented and poses a significant challenge to models of pulsar spin-down.
PSR J1846-0258 is a radio-quiet rotation-powered pulsar at the center of Supernova remnant Kes 75. It is the youngest pulsar (~723 year) of all known pulsars and slows down very predictably since its discovery in 2000. Till June 7, 2006 very stable b
We report on the 2020 reactivation of the energetic high-magnetic field pulsar PSR J1846-0258 and its pulsar wind nebula (PWN) after 14 years of quiescence with new Chandra and Green Bank Telescope observations. The emission of short-duration bursts
We report the detection of the pulsed signal of the radio-quiet magnetar-like pulsar PSR J1846-0258 in the high-energy gr-ray data of the Fermi Large Area Telescope (Fermi LAT). We produced phase-coherent timing models exploiting RXTE PCA and Swift X
We present a phase-coherent timing solution for PSR J1640-4631, a young 206 ms pulsar using X-ray timing observations taken with NuSTAR. Over this timing campaign, we have measured the braking index of PSR J1640-4631 to be n = 3.15+/-0.03. Using a se
The low braking-index pulsar PSR J1734$-$3333 could be born with superhigh internal magnetic fields $B_{rm in}sim10^{15}-10^{16}$ G, and undergo a supercritical accretion soon after its formation in a supernova explosion. The buried multipole magneti