ترغب بنشر مسار تعليمي؟ اضغط هنا

The composite nature of Dust-Obscured Galaxies (DOGs) at z~2-3 in the COSMOS field: I. A Far-Infrared View

117   0   0.0 ( 0 )
 نشر من قبل Laurie Riguccini
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dust-Obscured galaxies (DOGs) are bright 24 um-selected sources with extreme obscuration at optical wavelengths. They are typically characterized by a rising power-law continuum of hot dust (T_D ~ 200-1000K) in the near-IR indicating that their mid-IR luminosity is dominated by an an active galactic nucleus (AGN). DOGs with a fainter 24 um flux display a stellar bump in the near-IR and their mid-IR luminosity appears to be mainly powered by dusty star formation. Alternatively, it may be that the mid-IR emission arising from AGN activity is dominant but the torus is sufficiently opaque to make the near-IR emission from the AGN negligible with respect to the emission from the host component. In an effort to characterize the astrophysical nature of the processes responsible for the IR emission in DOGs, this paper exploits Herschel data (PACS + SPIRE) on a sample of 95 DOGs within the COSMOS field. We derive a wealth of far-IR properties (e.g., total IR luminosities; mid-to-far IR colors; dust temperatures and masses) based on SED fitting. Of particular interest are the 24 um-bright DOGs (F_24um > 1mJy). They present bluer far-IR/mid-IR colors than the rest of the sample, unveiling the potential presence of an AGN. The AGN contribution to the total 8-1000 um flux increases as a function of the rest-frame 8 um-luminosity irrespective of the redshift. This confirms that faint DOGs (L_8 um< 10^12 L_sun) are dominated by star-formation while brighter DOGs show a larger contribution from an AGN.



قيم البحث

اقرأ أيضاً

We present the X-ray properties of 108 Dust-Obscured Galaxies (DOGs; F$_{24 mu m}$/F$_{R} >$ 1000) in the COSMOS field, all of which detected in at least three far-infrared bands with the Herschel Observatory. Out of the entire sample, 22 are individ ually detected in the hard 2-8 keV X-ray band by the Chandra COSMOS Legacy survey, allowing us to classify them as AGN. Of them, 6 (27%) are Compton Thick AGN candidates with column densities N$_{H}$$>$10$^{24}$ cm$^{-2}$ while 15 are moderately obscured AGNs with 10$^{22}$ $<$ N$_{H}$ $<$ 10$^{24}$ cm$^{-2}$. Additionally, we estimate AGN contributions to the IR luminosity (8-1000$mu$m rest-frame) greater than 20% for 19 DOGs based on SED decomposition using Spitzer/MIPS 24$mu$m and the five Herschel bands (100-500 $mu$m). Only 7 of these are detected in X-rays individually. We performed a X-ray stacking analysis for the 86 undetected DOGs. We find that the AGN fraction in DOGs increases with 24$mu$m flux and that it is higher than that of the general 24$mu$m population. However, no significant difference is found when considering only X-ray detections. This strongly motivates the combined use of X-ray and far-IR surveys to successfully probe a wider population of AGNs, particularly for the most obscured ones.
A simple mid-infrared-to-optical color criterion of R-[24]>14 Vega mag results in a robust selection of approximately half of the redshift 2 ultraluminous infrared galaxy (ULIRG) population. These `Dust-Obscured Galaxies, or DOGs, have many propertie s that suggest that they are good candidates for systems in a transition phase between gas-rich mergers and QSOs.
We present an analysis of the dust attenuation of star forming galaxies at $z=2.5-4.0$ through the relationship between the UV spectral slope ($beta$), stellar mass ($M_{ast}$) and the infrared excess (IRX$=L_{rm{IR}}/L_{rm{UV}}$) based on far-infrar ed continuum observations from the Atacama Large Millimeter/sub-millimeter Array (ALMA). Our study exploits the full ALMA archive over the COSMOS field processed by the A$^3$COSMOS team, which includes an unprecedented sample of $sim1500$ galaxies at $zsim3$ as primary or secondary targets in ALMA band 6 or 7 observations with a median continuum sensitivity of 126 $rm{mu Jy/beam}$ (1$sigma$). The detection rate is highly mass dependent, decreasing drastically below $log (M_{ast}/M_{odot})=10.5$. The detected galaxies show that the IRX-$beta$ relationship of massive ($log M_{ast}/M_{odot} > 10$) main sequence galaxies at $z=2.5-4.0$ is consistent with that of local galaxies, while starbursts are generally offset by $sim0.5,{rm dex}$ to larger IRX values. At the low mass end, we derive upper limits on the infrared luminosities through stacking of the ALMA data. The combined IRX-$M_{ast}$ relation at $rm{log,(M_{ast}/M_{odot})>9}$ exhibits a significantly steeper slope than reported in previous studies at similar redshifts, implying little dust obscuration at $log M_{ast}/M_{odot}<10$. However, our results are consistent with early measurements at $zsim5.5$, indicating a potential redshift evolution between $zsim2$ and $zsim6$. Deeper observations targeting low mass galaxies will be required to confirm this finding.
We present SHARC-II 350um imaging of twelve 24um-bright (F_24um > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and CARMA 1mm imaging of a subset of 2 DOGs, all selected from the Bootes field of the NOAO Deep Wide-Field Survey. Detections of 4 DOGs at 350um imply IR luminosities which are consistent within a factor of 2 of expectations based on a warm dust spectral energy distribution (SED) scaled to the observed 24um flux density. The 350um upper limits for the 8 non-detected DOGs are consistent with both Mrk231 and M82 (warm dust SEDs), but exclude cold dust (Arp220) SEDs. The two DOGs targeted at 1mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T_dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ~3x10^8 M_sun. In comparison to other dusty z ~ 2 galaxy populations such as sub-millimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2x10^13 L_sun vs. 6x10^12 L_sun for the other galaxy populations), warmer dust temperatures (>35-60 K vs. ~30 K), and lower inferred dust masses (3x10^8 M_sun vs. 3x10^9 M_sun). Herschel and SCUBA-2 surveys should be able to detect hundreds of these power-law dominated DOGs. We use HST and Spitzer/IRAC data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24um-bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z~2 involves a sub-millimeter bright, cold-dust and star-formation dominated phase followed by a 24um-bright, warm-dust and AGN-dominated phase.
We investigate the nature of far-infrared (70 um) and hard X-ray (3-24 keV) selected galaxies in the COSMOS field detected with both Spitzer and Nuclear Spectroscopic Telescope Array (NuSTAR). By matching the Spitzer-COSMOS catalog against the NuSTAR -COSMOS catalog, we obtain a sample consisting of a hyperluminous infrared galaxy with log(L_IR/L_sun) > 13, 12 ultraluminous infrared galaxies with 12 < log(L_IR/L_sun) < 13, and 10 luminous infrared galaxies with 11 < log(L_IR/L_sun) < 12, i.e., 23 Hy/U/LIRGs in total. Using their X-ray hardness ratios, we find that 12 sources are obscured active galactic nuclei (AGNs) with absorption column densities of N_H > 10^22 cm^-2, including several Compton-thick (N_H ~ 10^24 cm^-2) AGN candidates. On the basis of the infrared (60 um) and intrinsic X-ray luminosities, we examine the relation between star-formation (SF) and AGN luminosities of the 23 Hy/U/LIRGs. We find that the correlation is similar to that of optically-selected AGNs reported by Netzer (2009), whereas local, far-infrared selected U/LIRGs show higher SF-to-AGN luminosity ratios than the average of our sample. This result suggests that our Hy/U/LIRGs detected both with Spitzer and NuSTAR are likely situated in a transition epoch between AGN-rising and cold-gas diminishing phases in SF-AGN evolutional sequences. The nature of a Compton-thick AGN candidate newly detected above 8 keV with NuSTAR (ID 245 in Civano et al. 2015) is briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا