ﻻ يوجد ملخص باللغة العربية
This paper is concerned with the performance of Orthogonal Matching Pursuit (OMP) algorithms applied to a dictionary $mathcal{D}$ in a Hilbert space $mathcal{H}$. Given an element $fin mathcal{H}$, OMP generates a sequence of approximations $f_n$, $n=1,2,dots$, each of which is a linear combination of $n$ dictionary elements chosen by a greedy criterion. It is studied whether the approximations $f_n$ are in some sense comparable to {em best $n$ term approximation} from the dictionary. One important result related to this question is a theorem of Zhang cite{TZ} in the context of sparse recovery of finite dimensional signals. This theorem shows that OMP exactly recovers $n$-sparse signal, whenever the dictionary $mathcal{D}$ satisfies a Restricted Isometry Property (RIP) of order $An$ for some constant $A$, and that the procedure is also stable in $ell^2$ under measurement noise. The main contribution of the present paper is to give a structurally simpler proof of Zhangs theorem, formulated in the general context of $n$ term approximation from a dictionary in arbitrary Hilbert spaces $mathcal{H}$. Namely, it is shown that OMP generates near best $n$ term approximations under a similar RIP condition.
Matrices satisfying the Restricted Isometry Property (RIP) play an important role in the areas of compressed sensing and statistical learning. RIP matrices with optimal parameters are mainly obtained via probabilistic arguments, as explicit construct
We propose a compressive spectral collocation method for the numerical approximation of Partial Differential Equations (PDEs). The approach is based on a spectral Sturm-Liouville approximation of the solution and on the collocation of the PDE in stro
We show the potential of greedy recovery strategies for the sparse approximation of multivariate functions from a small dataset of pointwise evaluations by considering an extension of the orthogonal matching pursuit to the setting of weighted sparsit
Orthogonal matching pursuit (OMP) is one of the mainstream algorithms for signal reconstruction/approximation. It plays a vital role in the development of compressed sensing theory, and it also acts as a driving force for the development of other heu
The multilabel learning problem with large number of labels, features, and data-points has generated a tremendous interest recently. A recurring theme of these problems is that only a few labels are active in any given datapoint as compared to the to