ترغب بنشر مسار تعليمي؟ اضغط هنا

About Blow up of Solutions With Arbitrary Positive Initial Energy to Nonlinear Wave Equations

91   0   0.0 ( 0 )
 نشر من قبل Varga Kalantarov
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that blow up of solutions with arbitrary positive initial energy of the Cauchy problem for the abstract wacve eqation of the form $Pu_{tt}+Au=F(u) (*)$ in a Hilbert space, where $P,A$ are positive linear operators and $F(cdot)$ is a continuously differentiable gradient operator can be obtained from the result of H.A. Levine on the growth of solutions of the Cauchy problem for (*). This result is applied to the study of inital boundary value problems for nonlinear Klein-Gordon equations, generalized Boussinesq equations and nonlinear plate equations. A result on blow up of solutions with positive initial energy of the initial boundary value problem for wave equation under nonlinear boundary condition is also obtained.

قيم البحث

اقرأ أيضاً

132 - Mengyun Liu , Chengbo Wang 2019
In this paper, we investigate the problem of blow up and sharp upper bound estimates of the lifespan for the solutions to the semilinear wave equations, posed on asymptotically Euclidean manifolds. Here the metric is assumed to be exponential perturb ation of the spherical symmetric, long range asymptotically Euclidean metric. One of the main ingredients in our proof is the construction of (unbounded) positive entire solutions for $Delta_{g}phi_lambda=lambda^{2}phi_lambda$, with certain estimates which are uniform for small parameter $lambdain (0,lambda_0)$. In addition, our argument works equally well for semilinear damped wave equations, when the coefficient of the dissipation term is integrable (without sign condition) and space-independent.
We prove that any sufficiently differentiable space-like hypersurface of ${mathbb R}^{1+N} $ coincides locally around any of its points with the blow-up surface of a finite-energy solution of the focusing nonlinear wave equation $partial_{tt} u - Del ta u=|u|^{p-1} u$ on ${mathbb R} times {mathbb R} ^N$, for any $1leq Nleq 4$ and $1 < p le frac {N+2} {N-2}$. We follow the strategy developed in our previous work [arXiv 1812.03949] on the construction of solutions of the nonlinear wave equation blowing up at any prescribed compact set. Here to prove blowup on a local space-like hypersurface, we first apply a change of variable to reduce the problem to blowup on a small ball at $t=0$ for a transformed equation. The construction of an appropriate approximate solution is then combined with an energy method for the existence of a solution of the transformed problem that blows up at $t=0$. To obtain a finite-energy solution of the original problem from trace arguments, we need to work with $H^2times H^1$ solutions for the transformed problem.
115 - Thomas Duyckaerts 2009
Consider the energy critical focusing wave equation on the Euclidian space. A blow-up type II solution of this equation is a solution which has finite time of existence but stays bounded in the energy space. The aim of this work is to exhibit univers al properties of such solutions. Let W be the unique radial positive stationary solution of the equation. Our main result is that in dimension 3, under an appropriate smallness assumption, any type II blow-up radial solution is essentially the sum of a rescaled W concentrating at the origin and a small remainder which is continuous with respect to the time variable in the energy space. This is coherent with the solutions constructed by Krieger, Schlag and Tataru. One ingredient of our proof is that the unique radial solution which is compact up to scaling is equal to W up to symmetries.
We study boundary blow-up solutions of semilinear elliptic equations $Lu=u_+^p$ with $p>1$, or $Lu=e^{au}$ with $a>0$, where $L$ is a second order elliptic operator with measurable coefficients. Several uniqueness theorems and an existence theorem are obtained.
75 - Yiming Su , Deng Zhang 2020
We study the focusing mass-critical rough nonlinear Schroedinger equations, where the stochastic integration is taken in the sense of controlled rough path. We obtain the global well-posedness if the mass of initial data is below that of the ground s tate. Moreover, the existence of minimal mass blow-up solutions is also obtained in both dimensions one and two. In particular, these yield that the mass of ground state is exactly the threshold of global well-posedness and blow-up of solutions in the stochastic focusing mass-critical case. Similar results are also obtained for a class of nonlinear Schroedinger equations with lower order perturbations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا