ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivariant Fields in an $SU({cal N})$ Gauge Theory with new Spontaneously Generated Fuzzy Extra Dimensions

41   0   0.0 ( 0 )
 نشر من قبل Seckin Kurkcuoglu
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We find new spontaneously generated fuzzy extra dimensions emerging from a certain deformation of $N=4$ supersymmetric Yang-Mills (SYM) theory with cubic soft supersymmetry breaking and mass deformation terms. First, we determine a particular four dimensional fuzzy vacuum that may be expressed in terms of a direct sum of product of two fuzzy spheres, and denote it in short as $S_F^{2, Int}times S_F^{2, Int}$. The direct sum structure of the vacuum is revealed by a suitable splitting of the scalar fields in the model in a manner that generalizes our approach in cite{Seckinson}. Fluctuations around this vacuum have the structure of gauge fields over $S_F^{2, Int}times S_F^{2, Int}$, and this enables us to conjecture the spontaneous broken model as an effective $U(n)$ $(n < {cal N})$ gauge theory on the product manifold $M^4 times S_F^{2, Int} times S_F^{2, Int}$. We support this interpretation by examining the $U(4)$ theory and determining all of the $SU(2)times SU(2)$ equivariant fields in the model, characterizing its low energy degrees of freedom. Monopole sectors with winding numbers $(pm 1,0),,(0,pm1),,(pm1,pm 1)$ are accessed from $S_F^{2, Int}times S_F^{2, Int}$ after suitable projections and subsequently equivariant fields in these sectors are obtained. We indicate how Abelian Higgs type models with vortex solutions emerge after dimensionally reducing over the fuzzy monopole sectors as well. A family of fuzzy vacua is determined by giving a systematic treatment for the splitting of the scalar fields and it is made manifest that suitable projections of these vacuum solutions yield all higher winding number fuzzy monopole sectors. We observe that the vacuum configuration $S_F^{2, Int}times S_F^{2, Int}$ identifies with the bosonic part of the product of two fuzzy superspheres with $OSP(2,2)times OSP(2,2)$ supersymmetry and elaborate on this feature.

قيم البحث

اقرأ أيضاً

We propose gauge-Higgs unification in fuzzy extra dimensions as a possible solution to the Higgs naturalness problem. In our approach, the fuzzy extra dimensions are created spontaneously as a vacuum solution of certain four-dimensional gauge theory. As an example, we construct a model which has a fuzzy torus as its vacuum. The Higgs field in our model is associated with the Wilson loop wrapped on the fuzzy torus. We show that the quadratic divergence in the mass of the Higgs field in the one-loop effective potential is absent. We then argue based on symmetries that the quantum corrections to the Higgs mass is suppressed including all loop contributions. We also consider a realization on the worldvolume theory of D3-branes probing $C^3/(Z_N times Z_N)$ orbifold with discrete torsion.
In an SU(N) gauge field theory, the n-point Green functions, namely, propagators and vertices, transform under the simultaneous local gauge variations of the gluon vector potential and the quark matter field in such a manner that the physical observa bles remain invariant. In this article, we derive this intrinsically non perturbative transformation law for the quark propagator within the system of covariant gauges. We carry out its explicit perturbative expansion till O(g_s^6) and, for some terms, till O(g_s^8). We study the implications of this transformation for the quark-anti-quark condensate, multiplicative renormalizability of the massless quark propagator, as well as its relation with the quark-gluon vertex at the one-loop order. Setting the color factors C_F=1 and C_A=0, Landau-Khalatnikov-Fradkin transformation for the abelian case of quantum electrodynamics is trivially recovered.
Dynamical localization of non-Abelian gauge fields in non-compact flat $D$ dimensions is worked out. The localization takes place via a field-dependent gauge kinetic term when a field condenses in a finite region of spacetime. Such a situation typica lly arises in the presence of topological solitons. We construct four-dimensional low-energy effective Lagrangian up to the quadratic order in a universal manner applicable to any spacetime dimensions. We devise an extension of the $R_xi$ gauge to separate physical and unphysical modes clearly. Out of the D-dimensional non-Abelian gauge fields, the physical massless modes reside only in the four-dimensional components, whereas they are absent in the extra-dimensional components. The universality of non-Abelian gauge charges holds due to the unbroken four-dimensional gauge invariance. We illustrate our methods with models in $D=5$ (domain walls), in $D=6$ (vortices), and in $D=7$.
Motivated by applications to soft supersymmetry breaking, we revisit the expansion of the Seiberg-Witten solution around the multi-monopole point on the Coulomb branch of pure $SU(N)$ $mathcal{N}=2$ gauge theory in four dimensions. At this point $N-1 $ mutually local magnetic monopoles become massless simultaneously, and in a suitable duality frame the gauge couplings logarithmically run to zero. We explicitly calculate the leading threshold corrections to this logarithmic running from the Seiberg-Witten solution by adapting a method previously introduced by DHoker and Phong. We compare our computation to existing results in the literature; this includes results specific to $SU(2)$ and $SU(3)$ gauge theories, the large-$N$ results of Douglas and Shenker, as well as results obtained by appealing to integrable systems or topological strings. We find broad agreement, while also clarifying some lingering inconsistencies. Finally, we explicitly extend the results of Douglas and Shenker to finite $N$, finding exact agreement with our first calculation.
We develop a flow-based sampling algorithm for $SU(N)$ lattice gauge theories that is gauge-invariant by construction. Our key contribution is constructing a class of flows on an $SU(N)$ variable (or on a $U(N)$ variable by a simple alternative) that respect matrix conjugation symmetry. We apply this technique to sample distributions of single $SU(N)$ variables and to construct flow-based samplers for $SU(2)$ and $SU(3)$ lattice gauge theory in two dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا