ﻻ يوجد ملخص باللغة العربية
We investigate the stability of circular material orbits in the analytic galactic metric recently derived by Harko textit{et al.} (2014). It turnsout that stability depends more strongly on the dark matter central density $%rho_{0}$ than on other parameters of the solution. This property then yields an upper limit on $rho _{0}$ for each individual galaxy, which we call here $rho _{0}^{text{upper}}$, such that stable circular orbits are possible textit{only} when the constraint $rho _{0}leq rho _{0}^{text{upper}}$ is satisfied. This is our new result. To approximately quantify the upper limit, we consider as a familiar example our Milky Way galaxy that has a projected dark matter radius $R_{text{DM}}sim 180$ kpc and find that $rho _{0}^{text{upper}}sim 2.37times 10^{11}$ $M_{odot }$kpc$^{-3}$. This limit turns out to be about four orders of magnitude larger than the latest data on central density $rho _{0}$ arising from the fit to the Navarro-Frenk-White (NFW) and Burkert density profiles. Such consistency indicates that the EiBI solution could qualify as yet another viable alternative model for dark matter.
Recently, Harko et al. (2014) derived an approximate metric of the galactic halo in the Eddington inspired Born-Infeld (EiBI) gravity. In this metric, we show that there is an upper limit $rho _{0}^{text{upper}}$ on the central density $rho _{0}$ of
In this paper, we wish to investigate certain observable effects in the recently obtained wormhole solution of the EiBI theory, which generalizes the zero mass Ellis-Bronnikov wormhole of general relativity. The solutions of EiBI theory contain an ex
We give the Buchdahl stability bound in Eddington-inspired Born-Infeld (EiBI) gravity. We show that this bound depends on an energy condition controlled by the model parameter $kappa$. From this bound, we can constrain $kappalesssim 10^{8}text{m}^2$
We investigate the tensor perturbation in the inflation model driven by a massive-scalar field in Eddington-inspired Born-Infeld gravity. For short wave-length modes, the perturbation feature is very similar to that of the usual chaotic inflation. Fo
We construct an axially symmetric solution of Eddington-inspired Born-Infeld gravity coupled to an electromagnetic field in 2+1 dimensions including a (negative) cosmological constant term. This is achieved by using a recently developed mapping proce