ﻻ يوجد ملخص باللغة العربية
We define a version of spectral invariant in the vortex Floer theory for a $G$-Hamiltonian manifold $M$. This defines potentially new (partial) symplectic quasi-morphism and quasi-states when $M//G$ is not semi-positive. We also establish a relation between vortex Hamiltonian Floer homology and Woodwards quasimap Floer homology by constructing a closed-open string map between them. This yields applications to study non-displaceability problems of subsets in $M//G$
In this paper, we write down a special Heegaard diagram for a given product three manifold $Sigma_gtimes S^1$. We use the diagram to compute its perturbed Heegaard Floer homology.
We study naturality properties of the transverse invariant in knot Floer homology under contact (+1)-surgery. This can be used as a calculational tool for the transverse invariant. As a consequence, we show that the Eliashberg-Chekanov twist knots E_n are not transversely simple for n odd and n>3.
We construct geometric maps from the cyclic homology groups of the (compact or wrapped) Fukaya category to the corresponding $S^1$-equivariant (Floer/quantum or symplectic) cohomology groups, which are natural with respect to all Gysin and periodicit
We prove that the LOSS and GRID invariants of Legendrian links in knot Floer homology behave in certain functorial ways with respect to decomposable Lagrangian cobordisms in the symplectization of the standard contact structure on $mathbb{R}^3$. Our
We correct a mistake regarding almost complex structures on Hilbert schemes of points in surfaces in arXiv:1510.02449. The error does not affect the main results of the paper, and only affects the proofs of invariance of equivariant symplectic Khovan