ترغب بنشر مسار تعليمي؟ اضغط هنا

Hotspot Relaxation Dynamics in a Current Carrying Superconductor

50   0   0.0 ( 0 )
 نشر من قبل Francesco Marsili
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally studied the dynamics of optically excited hotspots in current carrying WSi superconducting nanowires as a function of bias current, bath temperature and excitation wavelength. We discovered that: (1) the hotspot relaxation is a factor of ~ 4 slower in WSi than in NbN; (2) the hotspot relaxation time depends on bias current, and (3) the current dependence of the hotspot relaxation time changes with temperature and wavelength. We explained all of these effects with a model based on quasi particle recombination.

قيم البحث

اقرأ أيضاً

We analyze the effect of different types of fluctuations in internal electron energy on the rates of dark and photon counts in straight current-carrying superconducting nanowires. Dark counts appear due to thermal fluctuations in statistically indepe ndent cells with the effective size of the order of the coherence length; each count corresponds to an escape from the equilibrium state through an appropriate saddle point. For photon counts, spectral broadening of the deterministic cut off in the spectra of the detection efficiency can be phenomenologically explained by local thermal fluctuations in the electron energy within cells with the same effective volume as for dark counts.
We study an Anderson impurity embedded in a d-wave superconductor carrying a supercurrent. The low-energy impurity behavior is investigated by using the numerical renormalization group method developed for arbitrary electronic bath spectra. The resul ts explicitly show that the local impurity state is completely screened upon the non-zero current intensity. The impurity quantum criticality is in accordance with the well-known Kosterlitz-Thouless transition.
We experimentally study effect of single circular hole on the critical current $I_c$ of narrow superconducting strip with width $W$ much smaller than Pearl penetration depth $Lambda$. We found nonmonotonous dependence of $I_c$ on the location of a ho le across the strip and a weak dependence of $I_c$ on radius of hole has been found in case of hole with $xi ll R ll W$ ($xi$ is a superconducting coherence length) which is placed in the center of strip. The observed effects are caused by competition of two mechanisms of destruction of superconductivity - the entrance of vortex via edge of the strip and the nucleation of the vortex-antivortex pair near the hole. The mechanisms are clearly distinguishable by difference in dependence of $I_c$ on weak magnetic field.
For a noncentrosymmetric superconductor such as CePt3Si, we consider a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components. We demonstrate that such a model on a qualitative level a ccounts for experimentally observed features of the temperature dependence of the nuclear spin-lattice relaxation rate 1/T1, namely a peak just below Tc and a line-node gap behavior at low temperatures.
We numerically study the spatially-resolved NMR around a single vortex in a noncentrosymmetric superconductor such as CePt3Si. The nuclear spin-lattice relaxation rate 1/T1 under the influence of the vortex core states is calculated for an s+p-wave Cooper pairing state. The result is compared with that for an s-wave pairing state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا