ﻻ يوجد ملخص باللغة العربية
There is renewed interest in formulating integration as an inference problem, motivated by obtaining a full distribution over numerical error that can be propagated through subsequent computation. Current methods, such as Bayesian Quadrature, demonstrate impressive empirical performance but lack theoretical analysis. An important challenge is to reconcile these probabilistic integrators with rigorous convergence guarantees. In this paper, we present the first probabilistic integrator that admits such theoretical treatment, called Frank-Wolfe Bayesian Quadrature (FWBQ). Under FWBQ, convergence to the true value of the integral is shown to be exponential and posterior contraction rates are proven to be superexponential. In simulations, FWBQ is competitive with state-of-the-art methods and out-performs alternatives based on Frank-Wolfe optimisation. Our approach is applied to successfully quantify numerical error in the solution to a challenging model choice problem in cellular biology.
Adaptive Bayesian quadrature (ABQ) is a powerful approach to numerical integration that empirically compares favorably with Monte Carlo integration on problems of medium dimensionality (where non-adaptive quadrature is not competitive). Its key ingre
We introduce a globally-convergent algorithm for optimizing the tree-reweighted (TRW) variational objective over the marginal polytope. The algorithm is based on the conditional gradient method (Frank-Wolfe) and moves pseudomarginals within the margi
Marginalising over families of Gaussian Process kernels produces flexible model classes with well-calibrated uncertainty estimates. Existing approaches require likelihood evaluations of many kernels, rendering them prohibitively expensive for larger
In this work, we propose an infinite restricted Boltzmann machine~(RBM), whose maximum likelihood estimation~(MLE) corresponds to a constrained convex optimization. We consider the Frank-Wolfe algorithm to solve the program, which provides a sparse s
Bayesian quadrature (BQ) is a method for solving numerical integration problems in a Bayesian manner, which allows users to quantify their uncertainty about the solution. The standard approach to BQ is based on a Gaussian process (GP) approximation o