ترغب بنشر مسار تعليمي؟ اضغط هنا

The role of the coherence in the cross-correlation analysis of diffraction patterns from two-dimensional dense mono-disperse systems

39   0   0.0 ( 0 )
 نشر من قبل Tatiana Latychevskaia Yurevna
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The investigation of the static and dynamic structural properties of colloidal systems relies on techniques capable of atomic resolution in real space and femtosecond resolution in time. Recently, the cross-correlation function (CCF) analysis of both X-rays and electron diffraction patterns from dilute and dense aggregates has demonstrated the ability to retrieve information on the samples local order and symmetry. Open questions remain regarding the role of the beam coherence in the formation of the diffraction pattern and the properties of the CCF, especially in dense systems. Here, we simulate the diffraction patterns of dense two-dimensional monodisperse systems of different symmetries, varying the transverse coherence of the probing wave, and analyze their CCF. We study samples with different symmetries at different size scale, as for example, pentamers arranged into a four-fold lattice where each pentamer is surrounded by triangular lattices, both ordered and disordered. In such systems, different symmetry modulations are arising in the CCF at specific scattering vectors. We demonstrate that the amplitude of the CCF is a fingerprint of the degree of the ordering in the sample and that at partial transverse coherence, the CCF of a dense sample corresponds to that of an individual scattering object.

قيم البحث

اقرأ أيضاً

Angular x-ray cross-correlation analysis (XCCA) is an approach to study the structure of disordered systems using the results of coherent x-ray scattering experiments. Here, we present the results of simulations that validate our theoretical findings for XCCA obtained in a previous paper [M. Altarelli et al., Phys. Rev. B 82, 104207 (2010)]. We consider as a model two-dimensional (2D) disordered systems composed of non-interacting colloidal clusters with fivefold symmetry and with orientational and positional disorder. We simulate a coherent x-ray scattering in the far field from such disordered systems and perform the angular cross-correlation analysis of calculated diffraction data. The results of our simulations show the relation between the Fourier series representation of the cross-correlation functions (CCFs) and different types of correlations in disordered systems. The dependence of structural information extracted by XCCA on the density of disordered systems and the degree of orientational disorder of clusters is investigated. The statistical nature of the fluctuations of the CCFs in the model `single-shot experiments is demonstrated and the potential of extracting structural information from the analysis of CCFs averaged over a set of diffraction patterns is discussed. We also demonstrate the effect of partial coherence of x-rays on the results of XCCA.
Diffraction of light at lateral inhomogenities is a central process in the near-field studies of nanoscale phenomena, especially the propagation of surface waves. Theoretical description of this process is extremely challenging due to breakdown of pl ane-wave methods. Here, we present and analyze an exact solution for electromagnetic wave diffraction at the linear junction between two-dimensional electron systems (2DES) with dissimilar surface conductivities. The field at the junction is a combination of three components with different spatial structure: free-field component, non-resonant edge component, and surface plasmon-polariton (SPP). We find closed-form expressions for efficiency of photon-to-plasmon conversion by the edge being the ratio of electric fields in SPP and incident wave. Particularly, the conversion efficiency can considerably exceed unity for the contact between metal and 2DES with large impedance. Our findings can be considered as a first step toward quantitative near-field microscopy of inhomogeneous systems and polaritonic interferometry.
We simulate a trapped quasi-two-dimensional Bose gas using a classical field method. To interpret our results we identify the uniform Berezinskii-Kosterlitz-Thouless (BKT) temperature $T_{BKT}$ as where the system phase space density satisfies a crit ical value. We observe that density fluctuations are suppressed in the system well above $T_{BKT}$ when a quasi-condensate forms as the first occurrence of degeneracy. At lower temperatures, but still above $T_{BKT}$, we observe the development of appreciable coherence as a prominent finite-size effect, which manifests as bimodality in the momentum distribution of the system. At $T_{BKT}$ algebraic decay of off-diagonal correlations occurs near the trap center with an exponent of 0.25, as expected for the uniform system. Our results characterize the low temperature phase diagram for a trapped quasi-2D Bose gas and are consistent with observations made in recent experiments.
The convergent beam electron diffraction (CBED) patterns of twisted bilayer samples exhibit interference patterns in their CBED spots. Such interference patterns can be treated as off-axis holograms and the phase of the scattered waves, meaning the i nterlayer distance can be reconstructed. A detailed protocol of the reconstruction procedure is provided in this study. In addition, we derive an exact formula for reconstructing the interlayer distance from the recovered phase distribution, which takes into account the different chemical compositions of the individual monolayers. It is shown that one interference fringe in a CBED spot is sufficient to reconstruct the distance between the layers, which can be practical for imaging samples with a relatively small twist angle or when probing small sample regions. The quality of the reconstructed interlayer distance is studied as a function of the twist angle. At smaller twist angles, the reconstructed interlayer distance distribution is more precise and artefact free. At larger twist angles, artefacts due to the moire structure appear in the reconstruction. A method for the reconstruction of the average interlayer distance is presented. As for resolution, the interlayer distance can be reconstructed by the holographic approach at an accuracy of 0.5 A, which is a few hundred times better than the intrinsic z-resolution of diffraction limited resolution, as expressed through the spread of the measured k-values. Moreover, we show that holographic CBED imaging can detect variations as small as 0.1 A in the interlayer distance, though the quantitative reconstruction of such variations suffers from large errors.
We use a simple model to describe the nonlinear dynamics of a dense two dimensional dipolar exciton gas. The model predicts an initial fast expansion due to dipole-dipole pressure, followed by a much slower diffusion. The model is in very good agreem ent with recent experimental results. We show that the dipole pressure induced expansion strongly constrains the time available for achieving and observing Bose-Einstein quantum statistical effects, indicating a need for spatial exciton traps. We also suggest that nonlinear ballistic exciton transport due to the strong internal dipole pressure is readily achievable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا