Lectures given on KAM theory at the University of Ouargla (Algeria). I present a functional analytic treatment of the subject which includes KAM theory into the general framework of deformations and singularity theory.
This is part I of a book on KAM theory. We start from basic symplectic geometry, review Darboux-Weinstein theorems action angle coordinates and their global obstructions. Then we explain the content of Kolmogorovs invariant torus theorem and make it
more general allowing discussion of arbitrary invariant Lagrangian varieties over general Poisson algebras. We include it into the general problem of normal forms and group actions. We explain the iteration method used by Kolmogorov by giving a finite dimensional analog. Part I explains in which context we apply the theory of Kolmogorov spaces which will form the core of Part II.
The KAM iterative scheme turns out to be effective in many problems arising in perturbation theory. I propose an abstract version of the KAM theorem to gather these different results.
In this short note, I explain how the non-degeneracy condition of the KAM can be bypassed. The first version of the note has been submitted for publication back in 2010 and this version in 2012.
This is part II of our book on KAM theory. We start by defining functorial analysis and then switch to the particular case of Kolmogorov spaces. We develop functional calculus based on the notion of local operators. This allows to define the exponent
ial and therefore relation between Lie algebra and Lie group actions in the infinite dimensional context. Then we introduce a notion of finite dimensional reduction and use it to prove a fixed point theorem for Kolmogorov spaces. We conclude by proving general normal theorems.
In this note, we extend the renormalization horseshoe we have recently constructed with N. Goncharuk for analytic diffeomorphisms of the circle to their small two-dimensional perturbations. As one consequence, Herman rings with rotation numbers of bo
unded type survive on a codimension one set of parameters under small two-dimensional perturbations.