ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the symmetry energy from observational probes of the neutron star crust

158   0   0.0 ( 0 )
 نشر من قبل William Newton
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A number of observed phenomena associated with individual neutron star systems or neutron star populations find explanations in models in which the neutron star crust plays an important role. We review recent work examining the sensitivity to the slope of the symmetry energy $L$ of such models, and constraints extracted on $L$ from confronting them with observations. We focus on six sets of observations and proposed explanations: (i) The cooling rate of the neutron star in Cassiopeia A, confronting cooling models which include enhanced cooling in the nuclear pasta regions of the inner crust, (ii) the upper limit of the observed periods of young X-ray pulsars, confronting models of magnetic field decay in the crust caused by the high resistivity of the nuclear pasta layer, (iii) glitches from the Vela pulsar, confronting the paradigm that they arise due to a sudden re-coupling of the crustal neutron superfluid to the crustal lattice after a period during which they were decoupled due to vortex pinning, (iv) The frequencies of quasi-periodic oscillations in the X-ray tail of light curves from giant flares from soft gamma-ray repeaters, confronting models of torsional crust oscillations, (v) the upper limit on the frequency to which millisecond pulsars can be spun-up due to accretion from a binary companion, confronting models of the r-mode instability arising above a threshold frequency determined in part by the viscous dissipation timescale at the crust-core boundary, and (vi) the observations of precursor electromagnetic flares a few seconds before short gamma-ray bursts, confronting a model of crust shattering caused by resonant excitation of a crustal oscillation mode by the tidal gravitational field of a companion neutron star just before merger.

قيم البحث

اقرأ أيضاً

We demonstrate that observations of glitches in the Vela pulsar can be used to investigate the strength of the crust-core coupling in a neutron star, and suggest that recovery from the glitch is dominated by torque exerted by the re-coupling of super fluid components of the core that were decoupled from the crust during the glitch. Assuming that the recoupling is mediated by mutual friction between the superfluid neutrons and the charged components of the core, we use the observed magnitudes and timescales of the shortest timescale components of the recoveries from two recent glitches in the Vela pulsar to infer the fraction of the core that is coupled to the crust during the glitch, and hence spun up by the glitch event. Within the framework of a two-fluid hydrodynamic model of glitches, we analyze whether crustal neutrons alone are sufficient to drive the glitch activity observed in the Vela pulsar. We use two sets of neutron star equations of state (EOSs), both of which span crust and core consistently and cover a range of the slope of the symmetry energy at saturation density $30 < L <120$ MeV. One set produces maximum masses $approx$2.0$M_{odot}$, the second $approx$2.6$M_{odot}$. We also include the effects of entrainment of crustal neutrons by the superfluid lattice. We find that for medium to stiff EOSs, observations imply $>70%$ of the moment of inertia of the core is coupled to the crust during the glitch, though for softer EOSs $Lapprox 30$MeV as little as $5%$ could be coupled. No EOS is able to reproduce the observed glitch activity with crust neutrons alone, but extending the region where superfluid vortices are strongly pinned into the core by densities as little as 0.016fm$^{-3}$ above the crust-core transition density restores agreement with the observed glitch activity.
139 - Bao-An Li , Macon Magno 2020
Background: The nuclear symmetry energy $E_{sym}(rho)$ encodes information about the energy necessary to make nuclear systems more neutron-rich. While its slope parameter L at the saturation density $rho_0$ of nuclear matter has been relatively well constrained by recent astrophysical observations and terrestrial nuclear experiments, its curvature $K_{rm{sym}}$ characterizing the $E_{sym}(rho)$ around $2rho_0$ remains largely unconstrained. Over 520 calculations for $E_{sym}(rho)$ using various nuclear theories and interactions in the literature have predicted several significantly different $K_{rm{sym}}-L$ correlations. Purpose: If a unique $K_{rm{sym}}-L$ correlation of $E_{sym}(rho)$ can be firmly established, it will enable us to progressively better constrain the high-density behavior of $E_{sym}(rho)$ using the available constraints on its slope parameter L. We investigate if and by how much the different $K_{rm{sym}}-L$ correlations may affect neutron star observables. Method: A meta-model of nuclear Equation of States (EOSs) with three representative $K_{rm{sym}}-L$ correlation functions is used to generate multiple EOSs for neutron stars. We then examine effects of the $K_{rm{sym}}-L$ correlation on the crust-core transition density and pressure as well as the radius and tidal deformation of canonical neutron stars. Results:The $K_{rm{sym}}-L$ correlation affects significantly both the crust-core transition density and pressure. It also has strong imprints on the radius and tidal deformability of canonical neutron stars especially at small L values. The available data from LIGO/VIRGO and NICER set some useful limits for the slope L but can not distinguish the three representative $K_{rm{sym}}-L$ correlations considered.
We perform a systematic study of the dependence of the r-mode phenomenology in normal fluid pulsar neutron stars on the symmetry energy slope parameter $L$. An essential ingredient in this study is the bulk viscosity, which is evaluated consistently for several equations of state corresponding to different values of the slope parameter $L$. Direct Urca processes, which are allowed from a critical $L$-value onwards, enhance the bulk viscosity and have large influence on the $r$-mode features, such as the instability boundary and spin-down properties of newborn neutron stars. The magnitude of the changes in the $r$-mode properties induced by the direct Urca processes are driven by the $L$-value of the equation of state and the mass of the pulsar. The study has been done by using a family of equations of state of $beta$-equilibrated neutron star matter obtained with the finite range simple effective interaction, which provides realistic results for nuclear matter and finite nuclei properties. These equations of state predict the same properties in symmetric nuclear matter and have the same value of the symmetry energy parameter, $E_s(rho_0)$, but differ in the slope parameter $L$. The range chosen for the variation of $L$ is decided from the tidal deformability data extracted from the GW170817 event and the maximum mass constraint.
The symmetry energy obtained with the effective Skyrme energy density functional is related to the values of isoscalar effective mass and isovector effective mass, which is also indirectly related to the incompressibility of symmetric nuclear matter. In this work, we analyze the values of symmetry energy and its related nuclear matter parameters in five-dimensional parameter space by describing the heavy ion collision data, such as isospin diffusion data at 35 MeV/u and 50 MeV/u, neutron skin of $^{208}$Pb, and tidal deformability and maximum mass of neutron star. We obtain the parameter sets which can describe the isospin diffusion, neutron skin, tidal deformability and maximum mass of neutron star, and give the incompressibility $K_0$=250.23$pm$20.16 MeV, symmetry energy coefficient $S_0$=31.35$pm$2.08 MeV, the slope of symmetry energy $L$=59.57$pm$10.06 MeV, isoscalar effective mass $m_s^*/m$=0.75$pm$0.05 and quantity related to effective mass splitting $f_I$=0.005$pm$0.170. At two times normal density, the symmetry energy we obtained is in 35-55 MeV. To reduce the large uncertainties of $f_I$, more critical works in heavy ion collisions at different beam energies are needed.
We examine the correlations of neutron star radii with the nuclear matter incompressibility, symmetry energy, and their slopes, which are the key parameters of the equation of state (EoS) of asymmetric nuclear matter. The neutron star radii and the E oS parameters are evaluated using a representative set of 24 Skyrme-type effective forces and 18 relativistic mean field models, and two microscopic calculations, all describing 2$M_odot$ neutron stars. Unified EoSs for the inner-crust-core region have been built for all the phenomenological models, both relativistic and non-relativistic. Our investigation shows the existence of a strong correlation of the neutron star radii with the linear combination of the slopes of the nuclear matter incompressibility and the symmetry energy coefficients at the saturation density. Such correlations are found to be almost independent of the neutron star mass in the range $0.6text{-}1.8M_{odot}$. This correlation can be linked to the empirical relation existing between the star radius and the pressure at a nucleonic density between one and two times saturation density, and the dependence of the pressure on the nuclear matter incompressibility, its slope and the symmetry energy slope. The slopes of the nuclear matter incompressibility and the symmetry energy coefficients as estimated from the finite nuclei data yield the radius of a $1.4M_{odot}$ neutron star in the range $11.09text{-}12.86$ km.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا