ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimizing magneto-dipolar interactions for synchronizing vortex based spin-torque nano-oscillators

200   0   0.0 ( 0 )
 نشر من قبل Flavio Abreu Araujo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a theoretical study about the magneto-dipolar coupling and synchronization between two vortex-based spin-torque nano-oscillators. In this work we study the dependence of the coupling efficiency on the relative magnetization parameters of the vortices in the system. For that purpose, we combine micromagnetic simulations, Thiele equation approach, and analytical macro-dipole approximation model to identify the optimized configuration for achieving phase-locking between neighboring oscillators. Notably, we compare vortices configurations with parallel (P) polarities and with opposite (AP) polarities. We demonstrate that the AP core configuration exhibits a coupling strength about three times larger than in the P core configuration.



قيم البحث

اقرأ أيضاً

We investigate analytically and numerically the synchronization dynamics of dipolarly coupled vortex based Spin-Torque Nano Oscillators (STNO) with different pillar diameters. We identify the critical interpillar distances on which synchronization oc curs as a function of their diameter mismatch. We obtain numerically a phase diagram showing the transition between unsynchronized and synchronized states and compare it to analytical predictions we make using Thiele approach. Our study demonstrates that for relatively small diameters differences the synchronization dynamics can be described qualitatively using Adler equation. However when the diameters difference increases significantly, the system becomes strongly non-Adlerian.
We study the agility of current-tunable oscillators based on a magnetic vortex orbiting around a point contact in spin-valves. Theory predicts frequency-tuning by currents occurs at constant orbital radius, so an exceptional agility is anticipated. T o test this, we have inserted an oscillator in a microwave interferometer to apply abrupt current variations while time resolving its emission. Using frequency shift keying, we show that the oscillator can switch between two stabilized frequencies differing by 25% in less than ten periods. With a wide frequency tunability and a good agility, such oscillators possess desirable figures of merit for modulation-based rf applications.
We experimentally demonstrate that large magnetic vortex oscillations can be parametrically excited in a magnetic tunnel junction by the injection of radio-frequency (rf) currents at twice the natural frequency of the gyrotropic vortex core motion. T he mechanism of excitation is based on the parallel pumping of vortex motion by the rf orthoradial field generated by the injected current. Theoretical analysis shows that experimental results can be interpreted as the manifestation of parametric amplification when rf current is small, and of parametric instability when rf current is above a certain threshold. By taking into account the energy nonlinearities, we succeed to describe the amplitude saturation of vortex oscillations as well as the coexistence of stable regimes.
Spin transfer torque nano-oscillators are potential candidates for replacing the traditional inductor based voltage controlled oscillators in modern communication devices. Typical oscillator designs are based on trilayer magnetic tunnel junctions whi ch are disadvantaged by low power outputs and poor conversion efficiencies. In this letter, we theoretically propose to use resonant spin filtering in pentalayer magnetic tunnel junctions as a possible route to alleviate these issues and present device designs geared toward a high microwave output power and an efficient conversion of the d.c. input power. We attribute these robust qualities to the resulting non-trivial spin current profiles and the ultra high tunnel magnetoresistance, both arising from resonant spin filtering. The device designs are based on the nonequilibrium Greens function spin transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewskis equation and the Poissons equation. We demonstrate that the proposed structures facilitate oscillator designs featuring a large enhancement in microwave power of around $775%$ and an efficiency enhancement of over $1300%$ in comparison with typical trilayer designs. We also rationalize the optimum operating regions via an analysis of the dynamic and static device resistances. This work sets stage for pentalyer spin transfer torque nano-oscillator device designs that extenuate most of the issues faced by the typical trilayer designs.
Spin-orbit torque nano-oscillators based on bilayers of ferromagnetic (FM) and nonmagnetic (NM) metals are ultra-compact current-controlled microwave signal sources. They serve as a convenient testbed for studies of spin-orbit torque physics and are attractive for practical applications such as microwave assisted magnetic recording, neuromorphic computing, and chip-to-chip wireless communications. However, a major drawback of these devices is low output microwave power arising from the relatively small anisotropic magnetoresistance (AMR) of the FM layer. Here we experimentally show that the output power of a spin-orbit torque nano-oscillator can be enhanced by nearly three orders of magnitude without compromising its structural simplicity. Addition of a FM reference layer to the oscillator allows us to employ current-in-plane giant magnetoresistance (CIP GMR) to boost the output power of the device. This enhancement of the output power is a result of both large magnitude of GMR compared to that of AMR and different angular dependences of GMR and AMR. Our results pave the way for practical applications of spin-orbit torque nano-oscillators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا