ترغب بنشر مسار تعليمي؟ اضغط هنا

S-CANDELS: The Spitzer-Cosmic Assembly Near-Infrared Deep Extragalactic Survey. Survey Design, Photometry, and Deep IRAC Source Counts

147   0   0.0 ( 0 )
 نشر من قبل Matthew Ashby
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Spitzer-Cosmic Assembly Deep Near-Infrared Extragalactic Legacy Survey (S-CANDELS; PI G. Fazio) is a Cycle 8 Exploration Program designed to detect galaxies at very high redshifts (z > 5). To mitigate the effects of cosmic variance and also to take advantage of deep coextensive coverage in multiple bands by the Hubble Space Telescope Multi-Cycle Treasury Program CANDELS, S-CANDELS was carried out within five widely separated extragalactic fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the HST Deep Field North, and the Extended Groth Strip. S-CANDELS builds upon the existing coverage of these fields from the Spitzer Extended Deep Survey (SEDS) by increasing the integration time from 12 hours to a total of 50 hours but within a smaller area, 0.16 square degrees. The additional depth significantly increases the survey completeness at faint magnitudes. This paper describes the S-CANDELS survey design, processing, and publicly-available data products. We present IRAC dual-band 3.6+4.5 micron catalogs reaching to a depth of 26.5 AB mag. Deep IRAC counts for the roughly 135,000 galaxies detected by S-CANDELS are consistent with models based on known galaxy populations. The increase in depth beyond earlier Spitzer/IRAC surveys does not reveal a significant additional contribution from discrete sources to the diffuse Cosmic Infrared Background (CIB). Thus it remains true that only roughly half of the estimated CIB flux from COBE/DIRBE is resolved.



قيم البحث

اقرأ أيضاً

The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies using three separate c ameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z>1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10^9 M_odot to z approx 2, reaching the knee of the ultraviolet luminosity function (UVLF) of galaxies to z approx 8. The survey covers approximately 800 arcmin^2 and is divided into two parts. The CANDELS/Deep survey (5sigma point-source limit H=27.7 mag) covers sim 125 arcmin^2 within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 5sigma point-source limit of H gtrsim 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered wedding cake approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.
This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black ho les at $zsim1.5-8$, and to study Type Ia SNe beyond $z>1.5$. Five premier multi-wavelength sky regions are selected, each with extensive multiwavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and UVIS channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers sim125 square arcminutes within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of sim800 square arcminutes across GOODS and three additional fields (EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up to date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including CTE degradation for ACS, removal of electronic bias-striping present in ACS data after SM4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.
117 - D. Hanish , P. Capak , H. Teplitz 2015
We present the Spitzer Archival Far-InfraRed Extragalactic Survey (SAFIRES). This program produces refined mosaics and source lists for all far-infrared extragalactic data taken during the more than six years of the cryogenic operation of the Spitzer Space Telescope. The SAFIRES products consist of far-infrared data in two wavelength bands (70 um and 160 um) across approximately 180 square degrees of sky, with source lists containing far-infrared fluxes for almost 40,000 extragalactic point sources. Thus, SAFIRES provides a large, robust archival far-infrared data set suitable for many scientific goals.
118 - M. L. N. Ashby 2013
The Spitzer-South Pole Telescope Deep Field (SSDF) is a wide-area survey using Spitzers Infrared Array Camera (IRAC) to cover 94 square degrees of extragalactic sky, making it the largest IRAC survey completed to date outside the Milky Way midplane. The SSDF is centered at 23:30,-55:00, in a region that combines observations spanning a broad wavelength range from numerous facilities. These include millimeter imaging from the South Pole Telescope, far-infrared observations from Herschel/SPIRE, X-ray observations from the XMM XXL survey, near-infrared observations from the VISTA Hemisphere Survey, and radio-wavelength imaging from the Australia Telescope Compact Array, in a panchromatic project designed to address major outstanding questions surrounding galaxy clusters and the baryon budget. Here we describe the Spitzer/IRAC observations of the SSDF, including the survey design, observations, processing, source extraction, and publicly available data products. In particular, we present two band-merged catalogs, one for each of the two warm IRAC selection bands. They contain roughly 5.5 and 3.7 million distinct sources, the vast majority of which are galaxies, down to the SSDF 5-sigma sensitivity limits of 19.0 and 18.2 Vega mag (7.0 and 9.4 microJy) at 3.6 and 4.5 microns, respectively.
We describe the first data release from the Spitzer-IRAC Equatorial Survey (SpIES); a large-area survey of 115 deg^2 in the Equatorial SDSS Stripe 82 field using Spitzer during its warm mission phase. SpIES was designed to probe sufficient volume to perform measurements of quasar clustering and the luminosity function at z > 3 to test various models for feedback from active galactic nuclei (AGN). Additionally, the wide range of available multi-wavelength, multi-epoch ancillary data enables SpIES to identify both high-redshift (z > 5) quasars as well as obscured quasars missed by optical surveys. SpIES achieves 5{sigma} depths of 6.13 {mu}Jy (21.93 AB magnitude) and 5.75 {mu}Jy (22.0 AB magnitude) at 3.6 and 4.5 microns, respectively - depths significantly fainter than WISE. We show that the SpIES survey recovers a much larger fraction of spectroscopically-confirmed quasars (98%) in Stripe 82 than are recovered by WISE (55%). This depth is especially powerful at high-redshift (z > 3.5), where SpIES recovers 94% of confirmed quasars, whereas WISE only recovers 25%. Here we define the SpIES survey parameters and describe the image processing, source extraction, and catalog production methods used to analyze the SpIES data. In addition to this survey paper, we release 234 images created by the SpIES team and three detection catalogs: a 3.6 {mu}m-only detection catalog containing 6.1 million sources, a 4.5 {mu}m-only detection catalog containing 6.5 million sources, and a dual-band detection catalog containing 5.4 million sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا