ﻻ يوجد ملخص باللغة العربية
A. Chermak has recently proved that to each saturated fusion system over a finite $p$-group, there is a unique associated centric linking system. B. Oliver extended Chermaks proof by showing that all the higher cohomological obstruction groups relevant to unique existence of centric linking systems vanish. Both proofs indirectly assume the classification of finite simple groups. We show how to remove this assumption, thereby giving a classification-free proof of the Martino-Priddy conjecture concerning the $p$-completed classifying spaces of finite groups. Our main tool is a 1971 result of the first author on control of fixed points by $p$-local subgroups. This result is directly applicable for odd primes, and we show how a slight variation of it allows applications for $p=2$ in the presence of offenders.
The main result of the paper is the following theorem. Let $q$ be a prime and $A$ an elementary abelian group of order $q^3$. Suppose that $A$ acts coprimely on a profinite group $G$ and assume that $C_G(a)$ is locally nilpotent for each $ain A^{#}$. Then the group $G$ is locally nilpotent.
A rigid automorphism of a linking system is an automorphism which restricts to the identity on the Sylow subgroup. A rigid inner automorphism is conjugation by an element in the center of the Sylow subgroup. At odd primes, it is known that each rigid
For an element $g$ of a group $G$, an Engel sink is a subset $mathscr{E}(g)$ such that for every $ xin G $ all sufficiently long commutators $ [x,g,g,ldots,g] $ belong to $mathscr{E}(g)$. Let $q$ be a prime, let $m$ be a positive integer and $A$ an e
We give an algorithm which computes the fixed subgroup and the stable image for any endomorphism of the free group of rank two $F_2$, answering for $F_2$ a question posed by Stallings in 1984 and a question of Ventura.
This work focuses on dynamics arising from reaction-diffusion equations , where the profile of propagation is no longer characterized by a single front, but by a layer of several fronts which we call a propagating terrace. This means, intuitively, th