ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of fixed points and existence and uniqueness of centric linking systems

96   0   0.0 ( 0 )
 نشر من قبل Justin Lynd
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A. Chermak has recently proved that to each saturated fusion system over a finite $p$-group, there is a unique associated centric linking system. B. Oliver extended Chermaks proof by showing that all the higher cohomological obstruction groups relevant to unique existence of centric linking systems vanish. Both proofs indirectly assume the classification of finite simple groups. We show how to remove this assumption, thereby giving a classification-free proof of the Martino-Priddy conjecture concerning the $p$-completed classifying spaces of finite groups. Our main tool is a 1971 result of the first author on control of fixed points by $p$-local subgroups. This result is directly applicable for odd primes, and we show how a slight variation of it allows applications for $p=2$ in the presence of offenders.



قيم البحث

اقرأ أيضاً

The main result of the paper is the following theorem. Let $q$ be a prime and $A$ an elementary abelian group of order $q^3$. Suppose that $A$ acts coprimely on a profinite group $G$ and assume that $C_G(a)$ is locally nilpotent for each $ain A^{#}$. Then the group $G$ is locally nilpotent.
A rigid automorphism of a linking system is an automorphism which restricts to the identity on the Sylow subgroup. A rigid inner automorphism is conjugation by an element in the center of the Sylow subgroup. At odd primes, it is known that each rigid automorphism of a centric linking system is inner. We prove that the group of rigid outer automorphisms of a linking system at the prime $2$ is elementary abelian, and that it splits over the subgroup of rigid inner automorphisms. In a second result, we show that if an automorphism of a finite group $G$ restricts to the identity on the centric linking system for $G$, then it is of $p$-order modulo the group of inner automorphisms, provided $G$ has no nontrivial normal $p$-subgroups. We present two applications of this last result, one to tame fusion systems.
For an element $g$ of a group $G$, an Engel sink is a subset $mathscr{E}(g)$ such that for every $ xin G $ all sufficiently long commutators $ [x,g,g,ldots,g] $ belong to $mathscr{E}(g)$. Let $q$ be a prime, let $m$ be a positive integer and $A$ an e lementary abelian group of order $q^2$ acting coprimely on a finite group $G$. We show that if for each nontrivial element $a$ in $ A$ and every element $gin C_{G}(a)$ the cardinality of the smallest Engel sink $mathscr{E}(g)$ is at most $m$, then the order of $gamma_infty(G)$ is bounded in terms of $m$ only. Moreover we prove that if for each $ain Asetminus {1}$ and every element $gin C_{G}(a)$, the smallest Engel sink $mathscr{E}(g)$ generates a subgroup of rank at most $m$, then the rank of $gamma_infty(G)$ is bounded in terms of $m$ and $q$ only.
We give an algorithm which computes the fixed subgroup and the stable image for any endomorphism of the free group of rank two $F_2$, answering for $F_2$ a question posed by Stallings in 1984 and a question of Ventura.
68 - Thomas Giletti 2019
This work focuses on dynamics arising from reaction-diffusion equations , where the profile of propagation is no longer characterized by a single front, but by a layer of several fronts which we call a propagating terrace. This means, intuitively, th at transition from one equilibrium to another may occur in several steps, that is, successive phases between some intermediate stationary states. We establish a number of properties on such propagating terraces in a one-dimensional periodic environment, under very wide and generic conditions. We are especially concerned with their existence, uniqueness, and their spatial structure. Our goal is to provide insight into the intricate dynamics arising from multistable non-linearities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا