ترغب بنشر مسار تعليمي؟ اضغط هنا

Strongly nonequilibrium Bose-condensed atomic systems

39   0   0.0 ( 0 )
 نشر من قبل Vyacheslav Yukalov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A trapped Bose-Einstein condensate, being strongly perturbed, exhibits several spatial structures. First, there appear quantum vortices. Increasing the amount of the injected energy leads to the formation of vortex tangles representing quantum vortex turbulence. Continuing energy injection makes the system so strongly perturbed that vortices become destroyed and there develops another kind of spatial structures with essentially heterogeneous spatial density. These structures consist of high-density droplets, or grains, surrounded by the regions of low density. The droplets are randomly distributed in space, where they can move; however they live sufficiently long time to be treated as a type of metastable creatures. Such structures have been observed in nonequilibrium trapped Bose gases of $^{87}$Rb subject to the action of an oscillatory perturbation modulating the trapping potential. Perturbing the system even stronger transforms the droplet structure into wave turbulence, where Bose condensate is destroyed. Numerical simulations are in good agreement with experimental observations.

قيم البحث

اقرأ أيضاً

The paper discusses what characteristic quantities could quantify nonequilibrium states of Bose systems. Among such quantities, the following are considered: effective temperature, Fresnel number, and Mach number. The suggested classification of none quilibrium states is illustrated by studying a Bose-Einstein condensate in a shaken trap, where it is possible to distinguish eight different nonequilibrium states: weak nonequilibrium, vortex germs, vortex rings, vortex lines, deformed vortices, vortex turbulence, grain turbulence, and wave turbulence. Nonequilibrium states are created experimentally and modeled by solving the nonlinear Schrodinger equation.
Our understanding of various states of matter usually relies on the assumption of thermodynamic equilibrium. However, the transitions between different phases of matter can be strongly affected by non-equilibrium phenomena. Here we demonstrate and ex plain an example of non-equilibrium stalling of a continuous, second-order phase transition. We create a superheated atomic Bose gas, in which a Bose-Einstein condensate (BEC) persists above the equilibrium critical temperature, $T_c$, if its coupling to the surrounding thermal bath is reduced by tuning interatomic interactions. For vanishing interactions the BEC persists in the superheated regime for a minute. However, if strong interactions are suddenly turned on, it rapidly boils away. Our observations can be understood within a two-fluid picture, treating the condensed and thermal components of the gas as separate equilibrium systems with a tuneable inter-component coupling. We experimentally reconstruct a non-equilibrium phase diagram of our gas, and theoretically reproduce its main features.
163 - Frederic Chevy 2016
The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.
We investigate the properties of quantized vortices in a dipolar Bose-Einstein condensed gas by means of a generalised Gross-Pitaevskii equation. The size of the vortex core hugely increases by increasing the weight of the dipolar interaction and app roaching the transition to the supersolid phase. The critical angular velocity for the existence of an energetically stable vortex decreases in the supersolid, due to the reduced value of the density in the interdroplet region. The angular momentum per particle associated with the vortex line is shown to be smaller than $hbar$, reflecting the reduction of the global superfluidity. The real-time vortex nucleation in a rotating trap is shown to be triggered, as for a standard condensate, by the softening of the quadrupole mode. For large angular velocities, when the distance between vortices becomes comparable to the interdroplet distance, the vortices are arranged into a honeycomb structure, which coexists with the triangular geometry of the supersolid lattice and persists during the free expansion of the atomic cloud.
We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا