ﻻ يوجد ملخص باللغة العربية
In cognitive radio networks, rendezvous is a fundamental operation by which two cognitive users establish a communication link on a commonly-available channel for communications. Some existing rendezvous algorithms can guarantee that rendezvous can be completed within finite time and they generate channel-hopping (CH) sequences based on the whole channel set. However, some channels may not be available (e.g., they are being used by the licensed users) and these existing algorithms would randomly replace the unavailable channels in the CH sequence. This random replacement is not effective, especially when the number of unavailable channels is large. In this paper, we design a new rendezvous algorithm that attempts rendezvous on the available channels only for faster rendezvous. This new algorithm, called Interleaved Sequences based on Available Channel set (ISAC), constructs an odd sub-sequence and an even sub-sequence and interleaves these two sub-sequences to compose a CH sequence. We prove that ISAC provides guaranteed rendezvous (i.e., rendezvous can be achieved within finite time). We derive the upper bound on the maximum time-to-rendezvous (MTTR) to be O(m) (m is not greater than Q) under the symmetric model and O(mn) (n is not greater than Q) under the asymmetric model, where m and n are the number of available channels of two users and Q is the total number of channels (i.e., all potentially available channels). We conduct extensive computer simulation to demonstrate that ISAC gives significantly smaller MTTR than the existing algorithms.
Most of existing rendezvous algorithms generate channel-hopping sequences based on the whole channel set. They are inefficient when the set of available channels is a small subset of the whole channel set. We propose a new algorithm called ZOS which
Color channel selection is essential for accurate segmentation of sky and clouds in images obtained from ground-based sky cameras. Most prior works in cloud segmentation use threshold based methods on color channels selected in an ad-hoc manner. In t
Even though channel assignment has been studied for years, the performance of most IEEE 802.11-based multi-hop wireless networks such as wireless sensor network (WSN), wireless mesh network (WMN), mobile ad hoc network (MANET) is limited by channel i
Wireless communication in a network of mobile devices is a challenging and resource demanding task, due to the highly dynamic network topology and the wireless channel randomness. This paper investigates information broadcast schemes in 2D mobile ad-
Multi-channel wireless networks are increasingly being employed as infrastructure networks, e.g. in metro areas. Nodes in these networks frequently employ directional antennas to improve spatial throughput. In such networks, given a source and destin