ترغب بنشر مسار تعليمي؟ اضغط هنا

A mathematical model for the atomic clock error in case of jumps

88   0   0.0 ( 0 )
 نشر من قبل Cristina Zucca
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the mathematical model based on stochastic differential equations describing the error gained by an atomic clock to the cases of anomalous behavior including jumps and an increase of instability. We prove an exact iterative solution that can be useful for clock simulation, prediction, and interpretation, as well as for the understanding of the impact of clock error in the overall system in which clocks may be inserted as, for example, the Global Satellite Navigation Systems.


قيم البحث

اقرأ أيضاً

In this paper, we investigate the statistical signal-processing algorithm to measure the instant local clock jump from the timing data of multiple pulsars. Our algorithm is based on the framework of Bayesian statistics. In order to make the Bayesian algorithm applicable with limited computational resources, we dedicated our efforts to the analytic marginalization of irrelevant parameters. We found that the widely used parameter for pulsar timing systematics, the `Efac parameter, can be analytically marginalized. This reduces the Gaussian likelihood to a function very similar to the Students $t$-distribution. Our iterative method to solve the maximum likelihood estimator is also explained in the paper. Using pulsar timing data from the Yunnan Kunming 40m radio telescope, we demonstrate the application of the method, where 80-ns level precision for the clock jump can be achieved. Such a precision is comparable to that of current commercial time transferring service using satellites. We expect that the current method could help developing the autonomous pulsar time scale.
In this paper we present a weak approximation scheme for BSDEs driven by a Wiener process and an (in)finite activity Poisson random measure with drivers that are general Lipschitz functionals of the solution of the BSDE. The approximating backward st ochastic difference equations (BSDelta Es) are driven by random walks that weakly approximate the given Wiener process and Poisson random measure. We establish the weak convergence to the solution of the BSDE and the numerical stability of the sequence of solutions of the BSDelta Es. By way of illustration we analyse explicitly a scheme with discrete step-size distributions.
In [8] we established existence and uniqueness of solutions of backward stochastic differential equations in L^p under a monotonicity condition on the generator and in a general filtration. There was a mistake in the case 1 textless{} p textless{} 2. Here we give a corrected proof. Moreover the quasi-left continuity condition on the filtration is removed.
Recent technological advances in optical atomic clocks are opening new perspectives for the direct determination of geopotential differences between any two points at a centimeter-level accuracy in geoid height. However, so far detailed quantitative estimates of the possible improvement in geoid determination when adding such clock measurements to existing data are lacking. We present a first step in that direction with the aim and hope of triggering further work and efforts in this emerging field of chronometric geodesy and geophysics. We specifically focus on evaluating the contribution of this new kind of direct measurements in determining the geopotential at high spatial resolution (~ 10 km). We studied two test areas, both located in France and corresponding to a middle (Massif Central) and high (Alps) mountainous terrain. These regions are interesting because the gravitational field strength varies greatly from place to place at high spatial resolution due to the complex topography. Our method consists in first generating a synthetic high resolution geopotential map, then drawing synthetic measurement data (gravimetry and clock data) from it, and finally reconstructing the geopotential map from that data using least squares collocation. The quality of the reconstructed map is then assessed by comparing it to the original one used to generate the data. We show that adding only a few clock data points (less than 1 % of the gravimetry data) reduces the bias significantly and improves the standard deviation by a factor 3. The effect of the data coverage and data quality on the results is investigated, and the trade-off between the measurement noise level and the number of data points is discussed.
62 - Neil R. Sheeley Jr 2020
This paper describes a mathematical model for the spread of a virus through an isolated population of a given size. The model uses three, color-coded components, called molecules (red for infected and still contagious; green for infected, but no long er contagious; and blue for uninfected). In retrospect, the model turns out to be a digital analogue for the well-known SIR model of Kermac and McKendrick (1927). In our RGB model, the number of accumulated infections goes through three phases, beginning at a very low level, then changing to a transition ramp of rapid growth, and ending in a plateau of final values. Consequently, the differential change or growth rate begins at 0, rises to a peak corresponding to the maximum slope of the transition ramp, and then falls back to 0. The properties of these time variations, including the slope, duration, and height of the transition ramp, and the width and height of the infection rate, depend on a single parameter - the time that a red molecule is contagious divided by the average time between collisions of the molecules. Various temporal milestones, including the starting time of the transition ramp, the time that the accumulating number of infections obtains its maximum slope, and the location of the peak of the infection rate depend on the size of the population in addition to the contagious lifetime ratio. Explicit formulas for these quantities are derived and summarized. Finally, Appendix E has been added to describe the effect of vaccinations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا