ﻻ يوجد ملخص باللغة العربية
We review E$_{6(6)}$ exceptional field theory with a particular emphasis on the embedding of type IIB supergravity, which is obtained by picking the GL$(5)times {rm SL}(2)$ invariant solution of the section constraint. We work out the precise decomposition of the E$_{6(6)}$ covariant fields on the one hand and the Kaluza-Klein-like decomposition of type IIB supergravity on the other. Matching the symmetries, this allows us to establish the precise dictionary between both sets of fields. Finally, we establish on-shell equivalence. In particular, we show how the self-duality constraint for the four-form potential in type IIB is reconstructed from the duality relations in the off-shell formulation of the E$_{6(6)}$ exceptional field theory.
The background underlying the $eta$-deformed $AdS_5times S^5$ sigma-model is known to satisfy a generalization of the IIB supergravity equations. Their solutions are related by T-duality to solutions of type IIA supergravity with non-isometric linear
We construct the scalar potential for the exceptional field theory based on the affine symmetry group E$_9$. The fields appearing in this potential live formally on an infinite-dimensional extended spacetime and transform under E$_9$ generalised diff
IIB supergravity is reformulated with a manifest local USp(8) invariance that makes the embedding of five-dimensional maximal supergravities transparent. In this formulation the ten-dimensional theory exhibits all the 27 one-form fields and 22 of the
We present the supersymmetric extension of the recently constructed E$_{8(8)}$ exceptional field theory -- the manifestly U-duality covariant formulation of the untruncated ten- and eleven-dimensional supergravities. This theory is formulated on a (3
We construct the first complete exceptional field theory that is based on an infinite-dimensional symmetry group. E$_9$ exceptional field theory provides a unified description of eleven-dimensional and type IIB supergravity covariant under the affine