ترغب بنشر مسار تعليمي؟ اضغط هنا

A method for independent and continuous tuning of $N$ lasers phase-locked to the same frequency comb

135   0   0.0 ( 0 )
 نشر من قبل Mariusz Semczuk
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method of phase-locking any number of continuous-wave lasers to an optical frequency comb (OFC) that enables independent frequency positioning and control of each laser while still maintaining lock to the OFC. The scheme employs an acousto-optic modulator (AOM) in a double pass configuration added to each laser before its light is compared by optical heterodyne with the comb. The only requirement is that the tuning bandwidth of the double pass AOM setup be larger than half the OFC repetition rate. We demonstrate this scheme and achieve an arbitrary frequency tuning precision, a tuning rate of 200~MHz/s and a readout precision at the 1~kHz level.

قيم البحث

اقرأ أيضاً

A general mechanism for the generation of frequency combs referenced to atomic resonances is put forward. The mechanism is based on the periodic phase control of a quantum systems dipole response. We develop an analytic description of the comb spectr al structure, depending on both the atomic and the phase-control properties. We further suggest an experimental implementation of our scheme: Generating a frequency comb in the soft-x-ray spectral region, which can be realized with currently available techniques and radiation sources. The universality of this mechanism allows the generalization of frequency-comb technology to arbitrary frequencies, including the hard-x-ray regime by using reference transitions in highly charged ions.
Full phase control of THz emitting quantum cascade laser (QCL) combs has recently been demonstrated, opening new perspectives for even the most demanding applications. In this framework, simplifying the set-ups for control of these devices will help to accelerate their spreading in many fields. We report a new way to control the emission frequencies of a THz QCL comb by small optical frequency tuning (SOFT), using a very simple experimental setup, exploiting the incoherent emission of an ordinary white light emitting diode. The slightly perturbative regime accessible in these condition allows tweaking the complex refractive index of the semiconductor without destabilizing the broadband laser gain. The SOFT actuator is characterized and compared to another actuator, the QCL driving current. The suitability of this additional degree of freedom for frequency and phase stabilization of a THz QCL comb is shown and perspectives are discussed.
83 - Bruno Chanteau 2012
We have built a frequency chain which enables to measure the absolute frequency of a laser emitting in the 28-31 THz frequency range and stabilized onto a molecular absorption line. The set-up uses an optical frequency comb and an ultrastable 1.55 $m u$m frequency reference signal, transferred from LNE-SYRTE to LPL through an optical link. We are now progressing towards the stabilization of the mid-IR laser via the frequency comb and the extension of this technique to quantum cascade lasers. Such a development is very challenging for ultrahigh resolution molecular spectroscopy and fundamental tests of physics with molecules.
Direct frequency comb spectroscopy of trapped ions is demonstated for the first time. It is shown that the 4s^2S_(1/2)-4p^2P_(3/2) transition in calcium ions can be excited directly with a frequency comb laser that is upconverted to 393 nm. Detection of the transition is performed using a shelving scheme to suppress background signal from non-resonant comb modes. The measured transition frequency of f=761 905 012.7(0.5) MHz presents an improvement in accuracy of more than two orders of magnitude.
Phase modulation has emerged as a technique to create and manipulate high-dimensional frequency-bin entanglement. A necessary step to extending this technique to depolarized channels, such as those in a quantum networking environment, is the ability to perform phase modulation independent of photon polarization. This also necessary to harness hypertanglement in the polarization and frequency degrees of freedom for operations like Bell state discrimination. However, practical phase modulators are generally sensitive to the polarization of light and this makes them unsuited to such applications. We overcome this limitation by implementing a polarization diversity scheme to measure frequency-bin entanglement in arbitrarily polarized photon pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا