ترغب بنشر مسار تعليمي؟ اضغط هنا

High-pressure study of the Weyl semimetal NbAs

135   0   0.0 ( 0 )
 نشر من قبل Shiyan Li
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed a series of high-pressure synchrotron X-ray diffraction (XRD) and resistance measurements on the Weyl semimetal NbAs. The crystal structure remains stable up to 26 GPa according to the powder XRD data. The resistance of NbAs single crystal increases monotonically with pressure at low temperature. Up to 20 GPa, no superconducting transition is observed down to 0.3 K. These results show that the Weyl semimetal phase is robust in NbAs, and applying pressure is not a good way to get a topological superconductor from a Weyl semimetal.

قيم البحث

اقرأ أيضاً

We report the effect of hydrostatic pressure on the magnetotransport properties of the Weyl semimetal NbAs. Subtle changes can be seen in the $rho_{xx}(T)$ profiles with pressure up to 2.31 GPa. The Fermi surfaces undergo an anisotropic evolution und er pressure: the extremal areas slightly increase in the $mathbf{k_x}$-$mathbf{k_y}$ plane, but decrease in the $mathbf{k_z}$-$mathbf{k_y}$($mathbf{k_x}$) plane. The topological features of the two pockets observed at atmospheric pressure, however, remain unchanged at 2.31 GPa. No superconductivity can be seen down to 0.3 K for all the pressures measured. By fitting the temperature dependence of specific heat to the Debye model, we obtain a small Sommerfeld coefficient $gamma_0=$ 0.09(1) mJ/(mol$cdot$K$^2$) and a large Debye temperature, $Theta_D=$ 450(9) K, confirming a hard crystalline lattice that is stable under pressure. We also studied the Kadowaki-Woods ratio of this low-carrier-density massless system, $R_{KW}=$ 3.2$times 10^4$ $muOmega$ cm mol$^2$ K$^2$ J$^{-2}$. After accounting for the small carrier density in NbAs, this $R_{KW}$ indicates a suppressed transport scattering rate relative to other metals.
We report a polarized Raman study of Weyl semimetal TaAs. We observe all the optical phonons, with energies and symmetries consistent with our first-principles calculations. We detect additional excitations assigned to multiple-phonon excitations. Th ese excitations are accompanied by broad peaks separated by 140~cm$^{-1}$ that are also most likely associated with multiple-phonon excitations. We also noticed a sizable B$_1$ component for the spectral background, for which the origin remains unclear.
We utilized X-ray photoemission electron microscopy (XPEEM) and X-ray photoelectron spectroscopy (XPS) to investigate the crystal surface of Weyl semimetal NbAs. XPEEM images present white and black contrast in both the Nb 3d and As 3d core level spe ctra. Surface-sensitive XPS spectra indicate that the entire surface of the sample contains both surface states of Nb 3d and As 3d, in form of oxides, and bulk states of NbAs. Estimated atomic percentage values nNb/nAs suggest that the surface is Nb-rich and asymmetric for white and black areas.
Surface Fermi arcs (SFAs), the unique open Fermi-surfaces (FSs) discovered recently in topological Weyl semimetals (TWSs), are unlike closed FSs in conventional materials and can give rise to many exotic phenomena, such as anomalous SFA-mediated quan tum oscillations, chiral magnetic effects, three-dimensional quantum Hall effect, non-local voltage generation and anomalous electromagnetic wave transmission. Here, by using in-situ surface decoration, we demonstrate successful manipulation of the shape, size and even the connections of SFAs in a model TWS, NbAs, and observe their evolution that leads to an unusual topological Lifshitz transition not caused by the change of the carrier concentration. The phase transition teleports the SFAs between different parts of the surface Brillouin zone. Despite the dramatic surface evolution, the existence of SFAs is robust and each SFA remains tied to a pair of Weyl points of opposite chirality, as dictated by the bulk topology.
TaAs as one of the experimentally discovered topological Weyl semimetal has attracted intense interests recently. The ambient TaAs has two types of Weyl nodes which are not on the same energy level. As an effective way to tune lattice parameters and electronic interactions, high pressure is becoming a significant tool to explore new materials as well as their exotic states. Therefore, it is highly interesting to investigate the behaviors of topological Weyl fermions and possible structural phase transitions in TaAs under pressure. Here, with a combination of ab initio calculations and crystal structure prediction techniques, a new hexagonal P-6m2 phase is predicted in TaAs at pressure around 14 GPa. Surprisingly, this new phase is a topological semimetal with only single set of Weyl nodes exactly on the same energy level. The phase transition pressure from the experimental measurements, including electrical transport measurements and Raman spectroscopy, agrees with our theoretical prediction reasonably. Moreover, the P-6m2 phase seems to be quenched recoverable to ambient pressure, which increases the possibilities of further study on the exotic behaviors of single set of Weyl fermions, such as the interplay between surface states and other properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا