ترغب بنشر مسار تعليمي؟ اضغط هنا

An Analysis of the Matching Hypothesis in Networks

128   0   0.0 ( 0 )
 نشر من قبل Tao Jia
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

The matching hypothesis in social psychology claims that people are more likely to form a committed relationship with someone equally attractive. Previous works on stochastic models of human mate choice process indicate that patterns supporting the matching hypothesis could occur even when similarity is not the primary consideration in seeking partners. Yet, most if not all of these works concentrate on fully-connected systems. Here we extend the analysis to networks. Our results indicate that the correlation of the couples attractiveness grows monotonically with the increased average degree and decreased degree diversity of the network. This correlation is lower in sparse networks than in fully-connected systems, because in the former less attractive individuals who find partners are likely to be coupled with ones who are more attractive than them. The chance of failing to be matched decreases exponentially with both the attractiveness and the degree. The matching hypothesis may not hold when the degree-attractiveness correlation is present, which can give rise to negative attractiveness correlation. Finally, we find that the ratio between the number of matched couples and the size of the maximum matching varies non-monotonically with the average degree of the network. Our results reveal the role of network topology in the process of human mate choice and bring insights into future investigations of different matching processes in networks.



قيم البحث

اقرأ أيضاً

In their recent work Scale-free networks are rare, Broido and Clauset address the problem of the analysis of degree distributions in networks to classify them as scale-free at different strengths of scale-freeness. Over the last two decades, a multit ude of papers in network science have reported that the degree distributions in many real-world networks follow power laws. Such networks were then referred to as scale-free. However, due to a lack of a precise definition, the term has evolved to mean a range of different things, leading to confusion and contradictory claims regarding scale-freeness of a given network. Recognizing this problem, the authors of Scale-free networks are rare try to fix it. They attempt to develop a versatile and statistically principled approach to remove this scale-free ambiguity accumulated in network science literature. Although their paper presents a fair attempt to address this fundamental problem, we must bring attention to some important issues in it.
In human society, a lot of social phenomena can be concluded into a mathematical problem called the bipartite matching, one of the most well known model is the marriage problem proposed by Gale and Shapley. In this article, we try to find out some in trinsic properties of the ground state of this model and thus gain more insights and ideas about the matching problem. We apply Kuhn-Munkres Algorithm to find out the numerical ground state solution of the system. The simulation result proves the previous theoretical analysis using replica method. In the result, we also find out the amount of blocking pairs which can be regarded as a representative of the system stability. Furthermore, we discover that the connectivity in the bipartite matching problem has a great impact on the stability of the ground state, and the system will become more unstable if there were more connections between men and women.
Controlling a complex network towards a desire state is of great importance in many applications. Existing works present an approximate algorithm to find the driver nodes used to control partial nodes of the network. However, the driver nodes obtaine d by this algorithm depend on the matching order of nodes and cannot get the optimum results. Here we present a novel algorithm to find the driver nodes for target control based on preferential matching. The algorithm elaborately arrange the matching order of nodes in order to minimize the size of the driver nodes set. The results on both synthetic and real networks indicate that the performance of proposed algorithm are better than the previous one. The algorithm may have various application in controlling complex networks.
273 - Lingqi Meng , Naoki Masuda 2020
Random walks have been proven to be useful for constructing various algorithms to gain information on networks. Algorithm node2vec employs biased random walks to realize embeddings of nodes into low-dimensional spaces, which can then be used for task s such as multi-label classification and link prediction. The usefulness of node2vec in these applications is considered to be contingent upon properties of random walks that the node2vec algorithm uses. In the present study, we theoretically and numerically analyze random walks used by the node2vec. The node2vec random walk is a second-order Markov chain. We exploit the mapping of its transition rule to a transition probability matrix among directed edges to analyze the stationary probability, relaxation times, and coalescence time. In particular, we provide a multitude of evidence that node2vec random walk accelerates diffusion when its parameters are tuned such that walkers avoid both back-tracking and visiting a neighbor of the previously visited node, but not excessively.
In epidemic modeling, the term infection strength indicates the ratio of infection rate and cure rate. If the infection strength is higher than a certain threshold -- which we define as the epidemic threshold - then the epidemic spreads through the p opulation and persists in the long run. For a single generic graph representing the contact network of the population under consideration, the epidemic threshold turns out to be equal to the inverse of the spectral radius of the contact graph. However, in a real world scenario it is not possible to isolate a population completely: there is always some interconnection with another network, which partially overlaps with the contact network. Results for epidemic threshold in interconnected networks are limited to homogeneous mixing populations and degree distribution arguments. In this paper, we adopt a spectral approach. We show how the epidemic threshold in a given network changes as a result of being coupled with another network with fixed infection strength. In our model, the contact network and the interconnections are generic. Using bifurcation theory and algebraic graph theory, we rigorously derive the epidemic threshold in interconnected networks. These results have implications for the broad field of epidemic modeling and control. Our analytical results are supported by numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا