ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck 2015 results. V. LFI calibration

100   0   0.0 ( 0 )
 نشر من قبل Maurizio Tomasi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering four years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the cosmic microwave background dipole, but we now use the orbital component, rather than adopting the Wilkinson Microwave Anisotropy Probe (WMAP) solar dipole. This allows our 2015 LFI analysis to provide an independent Solar dipole estimate, which is in excellent agreement with that of HFI and within $1sigma$ (0.3% in amplitude) of the WMAP value. This 0.3% shift in the peak-to-peak dipole temperature from WMAP and a global overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45% (30 GHz), 0.64% (44 GHz), and 0.82% (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is now at the level of 0.20% for the 70 GHz map, 0.26% for the 44 GHz map, and 0.35% for the 30 GHz map. We provide a detailed description of the impact of all the changes implemented in the calibration since the previous data release.


قيم البحث

اقرأ أيضاً

We discuss the methods employed to photometrically calibrate the data acquired by the Low Frequency Instrument on Planck. Our calibration is based on a combination of the Orbital Dipole plus the Solar Dipole, caused respectively by the motion of the Planck spacecraft with respect to the Sun and by motion of the Solar System with respect to the CMB rest frame. The latter provides a signal of a few mK with the same spectrum as the CMB anisotropies and is visible throughout the mission. In this data release we rely on the characterization of the Solar Dipole as measured by WMAP. We also present preliminary results (at 44GHz only) on the study of the Orbital Dipole, which agree with the WMAP value of the Solar System speed within our uncertainties. We compute the calibration constant for each radiometer roughly once per hour, in order to keep track of changes in the detectors gain. Since non-idealities in the optical response of the beams proved to be important, we implemented a fast convolution algorithm which considers the full beam response in estimating the signal generated by the dipole. Moreover, in order to further reduce the impact of residual systematics due to sidelobes, we estimated time variations in the calibration constant of the 30GHz radiometers (the ones with the largest sidelobes) using the signal of a reference load. We have estimated the calibration accuracy in two ways: we have run a set of simulations to assess the impact of statistical errors and systematic effects in the instrument and in the calibration procedure, and we have performed a number of consistency checks on the data and on the brightness temperature of Jupiter. Calibration errors for this data release are expected to be about 0.6% at 44 and 70 GHz, and 0.8% at 30 GHz. (Abriged.)
This paper describes the mapmaking procedure applied to Planck LFI (Low Frequency Instrument) data. The mapmaking step takes as input the calibrated timelines and pointing information. The main products are sky maps of $I,Q$, and $U$ Stokes component s. For the first time, we present polarization maps at LFI frequencies. The mapmaking algorithm is based on a destriping technique, enhanced with a noise prior. The Galactic region is masked to reduce errors arising from bandpass mismatch and high signal gradients. We apply horn-uniform radiometer weights to reduce effects of beam shape mismatch. The algorithm is the same as used for the 2013 release, apart from small changes in parameter settings. We validate the procedure through simulations. Special emphasis is put on the control of systematics, which is particularly important for accurate polarization analysis. We also produce low-resoluti
We present the current accounting of systematic effect uncertainties for the Low Frequency Instrument (LFI) that are relevant to the 2015 release of the Planck cosmological results, showing the robustness and consistency of our data set, especially f or polarization analysis. We use two complementary approaches: (i) simulations based on measured data and physical models of the known systematic effects; and (ii) analysis of difference maps containing the same sky signal (null-maps). The LFI temperature data are limited by instrumental noise. At large angular scales the systematic effects are below the cosmic microwave background (CMB) temperature power spectrum by several orders of magnitude. In polarization the systematic uncertainties are dominated by calibration uncertainties and compete with the CMB $E$-modes in the multipole range 10--20. Based on our model of all known systematic effects, we show that these effects introduce a slight bias of around $0.2,sigma$ on the reionization optical depth derived from the 70,GHz $EE$ spectrum using the 30 and 353,GHz channels as foreground templates. At 30,GHz the systematic effects are smaller than the Galactic foreground at all scales in temperature and polarization, which allows us to consider this channel as a reliable template of synchrotron emission. We assess the residual uncertainties due to LFI effects on CMB maps and power spectra after component separation and show that these effects are smaller than the CMB amplitude at all scales. We also assess the impact on non-Gaussianity studies and find it to be negligible. Some residuals still appear in null maps from particular sky survey pairs, particularly at 30 GHz, suggesting possible straylight contamination due to an imperfect knowledge of the beam far sidelobes.
This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst This paper describes the Planck Low Frequency Instrument tuning activities performed through the ground test campaigns, from Unit to Satellite Levels. Tuning is key to achieve the best possible instrument performance and tuning parameters strongly depend on thermal and electrical conditions. For this reason tuning has been repeated several times during ground tests and it has been repeated in flight before starting nominal operations. The paper discusses the tuning philosophy, the activities and the obtained results, highlighting developments and changes occurred during test campaigns. The paper concludes with an overview of tuning performed during the satellite cryogenic test campaign (Summer 2008) and of the plans for the just started in-flight calibration.
We present an updated description of the Planck Low Frequency Instrument (LFI) data processing pipeline, associated with the 2015 data release. We point out the places where our results and methods have remained unchanged since the 2013 paper and we highlight the changes made for the 2015 release, describing the products (especially timelines) and the ways in which they were obtained. We demonstrate that the pipeline is self-consistent (principally based on simulations) and report all null tests. For the first time, we present LFI maps in Stokes Q and U polarization. We refer to other related papers where more detailed descriptions of the LFI data processing pipeline may be found if needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا