ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise Determination of the Deuteron Spin Structure at Low to Moderate $Q^2$ with CLAS and Extraction of the Neutron Contribution

121   0   0.0 ( 0 )
 نشر من قبل Sebastian E. Kuhn
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Labs CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2.5, 4.2 and 5.8 GeV were scattered from deuteron ($^{15}$ND$_3$) targets, dynamically polarized along the beam direction, and detected with CLAS. From the measured double spin asymmetry, the virtual photon absorption asymmetry $A_1^d$ and the polarized structure function $g_1^d$ were extracted over a wide kinematic range (0.05 GeV$^2 < Q^2 <$ 5 GeV$^2$ and 0.9 GeV $< W <$ 3 GeV). We use an unfolding procedure and a parametrization of the corresponding proton results to extract from these data the polarized structure functions $A_1^n$ and $g_1^n$ of the (bound) neutron, which are so far unknown in the resonance region, $W < 2$ GeV. We compare our final results, including several moments of the deuteron and neutron spin structure functions, with various theoretical models and expectations as well as parametrizations of the world data. The unprecedented precision and dense kinematic coverage of these data can aid in future extractions of polarized parton distributions, tests of perturbative QCD predictions for the quark polarization at large $x$, a better understanding of quark-hadron duality, and more precise values for higher-twist matrix elements in the framework of the Operator Product Expansion.



قيم البحث

اقرأ أيضاً

We measured the $g_1$ spin structure function of the deuteron at low $Q^{2}$, where QCD can be approximated with chiral perturbation theory ($chi$PT). The data cover the resonance region, up to an invariant mass of $Wapprox1.9$~GeV. The generalized G erasimov-Drell-Hearn sum, the moment $bar{Gamma}_{1}^{d}$ and the integral $bar{I}_gamma^d$ related to the spin polarizability $gamma_{0}^{d}$ are precisely determined down to a minimum $Q^2$ of 0.02~GeV$^2$ for the first time, about 2.5 times lower than that of previous data. We compare them to several $chi$PT calculations and models. These results are the first in a program of benchmark measurements of polarization observables in the $chi$PT domain.
Measurements of the proton and deuteron $F_2$ structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range $0.06 < Q^2 < 2.8$ GeV$^2$, and Bjorken $x$ values from 0.009 to 0.45, thus extending the knowledge of $F_2$ to low values of $Q^2$ at low $x$. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for $Q^2<2$ GeV$^2$ at the low and high $x$-values. Down to the lowest value of $Q^2$, the structure function is in good agreement with a parameterization of $F_2$ based on data that have been taken at much higher values of $Q^2$ or much lower values of $x$, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low $x$ remains well described by a logarithmic dependence on $Q^2$ at low $Q^2$.
Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 leq x leq 0.9$ and $0.18 $ GeV$^2$ $leq Q^2 leq 20$ GeV$^2$. The data were collected at the H ERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x leq 0.021$, a value of $0.330 pm 0.011mathrm{(theo.)}pm0.025mathrm{(exp.)}pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.
We present new experimental results of the $^3$He spin structure function $g_2$ in the resonance region at $Q^2$ values between 1.2 and 3.0 (GeV/c)$^2$. Spin dependent moments of the neutron were then extracted. Our main result, the resonance contrib ution to the neutron $d_2$ matrix element, was found to be small at $<Q^2>$=2.4 (GeV/c)$^2$ and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for $^3$He and the neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low $x$ unmeasured region. A small deviation was observed at $Q^2$ values between 0.5 and 1.2 (GeV/c)$^2$ for the neutron.
The spin-structure functions $g_1$ and $g_2$, and the spin-dependent partial cross-section $sigma_mathrm{TT}$ have been extracted from the polarized cross-sections differences, $Delta sigma_{parallel}hspace{-0.06cm}left( u,Q^{2}right)$ and $Delta sig ma_{perp}hspace{-0.06cm}left( u,Q^{2}right)$ measured for the $vec{^textrm{3}textrm{He}}(vec{textrm{e}},textrm{e})textrm{X}$ reaction, in the E97-110 experiment at Jefferson Lab. Polarized electrons with energies from 1.147 to 4.404 GeV were scattered at angles of 6$^{circ}$ and 9$^{circ}$ from a longitudinally or transversely polarized $^{3}$He target. The data cover the kinematic regions of the quasi-elastic, resonance production and beyond. From the extracted spin-structure functions, the first moments $overline{Gamma_1}hspace{-0.06cm}left(Q^{2}right)$, $Gamma_2hspace{-0.06cm}left(Q^{2}right)$ and $I_{mathrm{TT}}hspace{-0.06cm}left(Q^{2}right)$ are evaluated with high precision for the neutron in the $Q^2$ range from 0.035 to 0.24~GeV$^{2}$. The comparison of the data and the chiral effective field theory predictions reveals the importance of proper treatment of the $Delta$ degree of freedom for spin observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا