ﻻ يوجد ملخص باللغة العربية
A new modified Galerkin / Finite Element Method is proposed for the numerical solution of the fully nonlinear shallow water wave equations. The new numerical method allows the use of low-order Lagrange finite element spaces, despite the fact that the system contains third order spatial partial derivatives for the depth averaged velocity of the fluid. After studying the efficacy and the conservation properties of the new numerical method, we proceed with the validation of the new numerical model and boundary conditions by comparing the numerical solutions with laboratory experiments and with available theoretical asymptotic results.
We present a novel hyperbolic reformulation of the Serre-Green-Naghdi (SGN) model for the description of dispersive water waves. Contrarily to the classical Boussinesq-type models, it contains only first order derivatives, thus allowing to overcome t
We propose a weak Galerkin(WG) finite element method for solving the one-dimensional Burgers equation. Based on a new weak variational form, both semi-discrete and fully-discrete WG finite element schemes are established and analyzed. We prove the ex
We consider two `Classical Boussinesq type systems modelling two-way propagation of long surface waves in a finite channel with variable bottom topography. Both systems are derived from the 1-d Serre-Green-Naghdi (SGN) system; one of them is valid fo
The locally modified finite element method, which is introduced in [Frei, Richter: SINUM 52(2014), p. 2315-2334] is a simple fitted finite element method that is able to resolve weak discontinuities in interface problems. The method is based on a fix
In this work, we describe a simple finite element approach that is able to resolve weak discontinuities in interface problems accurately. The approach is based on a fixed patch mesh consisting of quadrilaterals, that will stay unchanged independent o