ﻻ يوجد ملخص باللغة العربية
RAR uses classic symmetric encryption algorithm SHA-1 hashing and AES algorithm for encryption, and the only method of password recovery is brute force, which is very time-consuming. In this paper, we present an approach using GPUs to speed up the password recovery process. However, because the major calculation and time-consuming part, SHA-1 hashing, is hard to be parallelized, so this paper adopts coarse granularity parallel. That is, one GPU thread is responsible for the validation of one password. We mainly use three optimization methods to optimize this parallel version: asynchronous parallel between CPU and GPU, redundant calculations and conditional statements reduction, and the usage of registers optimization. Experiment result shows that the final version reaches 43~57 times speedup on an AMD FirePro W8000 GPU, compared to a well-optimized serial version on Intel Core i5 CPU.
Priority queue, often implemented as a heap, is an abstract data type that has been used in many well-known applications like Dijkstras shortest path algorithm, Prims minimum spanning tree, Huffman encoding, and the branch-and-bound algorithm. Howeve
Counting k-cliques in a graph is an important problem in graph analysis with many applications. Counting k-cliques is typically done by traversing search trees starting at each vertex in the graph. An important optimization is to eliminate search tre
In this new version of ZMCintegral, we have added the functionality of multi-function integrations, i.e. the ability to integrate more than $10^{3}$ different functions on GPUs. The Python API remains the similar as the previou
Stencil computations are widely used in HPC applications. Today, many HPC platforms use GPUs as accelerators. As a result, understanding how to perform stencil computations fast on GPUs is important. While implementation strategies for low-order sten
Load-balancing among the threads of a GPU for graph analytics workloads is difficult because of the irregular nature of graph applications and the high variability in vertex degrees, particularly in power-law graphs. We describe a novel load balancin