ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoelectronic thermometers optimised for sub-10 millikelvin operation

48   0   0.0 ( 0 )
 نشر من قبل Jonathan Prance
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. Above 7 mK the devices are in good thermal contact with the environment, well isolated from electrical noise, and not susceptible to self-heating. This is attributed to an optimised design that incorporates cooling fins with a high electron-phonon coupling and on-chip electronic filters, combined with a low-noise electronic measurement setup. Below 7 mK the electron temperature is seen to diverge from the ambient temperature. By immersing a Coulomb Blockade Thermometer in the 3He/4He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK.

قيم البحث

اقرأ أيضاً

The spin of an electron or a nucleus in a semiconductor [1] naturally implements the unit of quantum information -- the qubit -- while providing a technological link to the established electronics industry [2]. The solid-state environment, however, m ay provide deleterious interactions between the qubit and the nuclear spins of surrounding atoms [3], or charge and spin fluctuators in defects, oxides and interfaces [4]. For group IV materials such as silicon, enrichment of the spin-zero 28-Si isotope drastically reduces spin-bath decoherence [5]. Experiments on bulk spin ensembles in 28-Si crystals have indeed demonstrated extraordinary coherence times [6-8]. However, it remained unclear whether these would persist at the single-spin level, in gated nanostructures near amorphous interfaces. Here we present the coherent operation of individual 31-P electron and nuclear spin qubits in a top-gated nanostructure, fabricated on an isotopically engineered 28-Si substrate. We report new benchmarks for coherence time (> 30 seconds) and control fidelity (> 99.99%) of any single qubit in solid state, and perform a detailed noise spectroscopy [9] to demonstrate that -- contrary to widespread belief -- the coherence is not limited by the proximity to an interface. Our results represent a fundamental advance in control and understanding of spin qubits in nanostructures.
We present Silver-epoxy filters combining excellent microwave attenuation with efficient wire thermalization, suitable for low temperature quantum transport experiments. Upon minimizing parasitic capacitances, the attenuation reaches >100 dB above ~1 50 MHz and - when capacitors are added - already above ~30 MHz. We measure the device electron temperature with a GaAs quantum dot and demonstrate excellent filter performance. Upon improving the sample holder and adding a second filtering stage, we obtain electron temperatures as low as 7.5 +/- 0.2 mK in metallic Coulomb blockade thermometers.
We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons direct ly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advantage. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds.
We present an exhaustive theoretical analysis of charge and thermoelectric transport in a normal metal-ferromagnetic insulator-superconductor (NFIS) junction, and explore the possibility of its use as a sensitive thermometer. We investigated the tran sfer functions and the intrinsic noise performance for different measurement configurations. A common feature of all configurations is that the best temperature noise performance is obtained in the non-linear temperature regime for a structure based on an europium chalcogenide ferromagnetic insulator in contact with a superconducting Al film structure. For an open-circuit configuration, although the maximal intrinsic temperature sensitivity can achieve $10$nKHz$^{-1/2}$, a realistic amplifying chain will reduce the sensitivity up to $10$$mu$KHz$^{-1/2}$. To overcome this limitation we propose a measurement scheme in a closed-circuit configuration based on state-of-art SQUID detection technology in an inductive setup. In such a case we show that temperature noise can be as low as $35$nKHz$^{-1/2}$. We also discuss a temperature-to-frequency converter where the obtained thermo-voltage developed over a Josephson junction operated in the dissipative regime is converted into a high-frequency signal. We predict that the structure can generate frequencies up to $sim 120$GHz, and transfer functions up to $200$GHz/K at around $sim 1$K. If operated as electron thermometer, the device may provide temperature noise lower than $35$nKHz$^{-1/2}$ thereby being potentially attractive for radiation sensing applications.
Here we review recent progress in cooling micro/nanoelectronic devices significantly below 10 mK. A number of groups worldwide are working to produce sub-millikelvin on-chip electron temperatures, motivated by the possibility of observing new physica l effects and improving the performance of quantum technologies, sensors and metrological standards. The challenge is a longstanding one, with the lowest reported on-chip electron temperature having remained around 4 mK for more than 15 years. This is despite the fact that microkelvin temperatures have been accessible in bulk materials since the mid 20th century. In this review we describe progress made in the last five years using new cooling techniques. Developments have been driven by improvements in the understanding of nanoscale physics, material properties and heat flow in electronic devices at ultralow temperatures, and have involved collaboration between universities and institutes, physicists and engineers. We hope that this review will serve as a summary of the current state-of-the-art, and provide a roadmap for future developments. We focus on techniques that have shown, in experiment, the potential to reach sub-millikelvin electron temperatures. In particular, we focus on on-chip demagnetisation refrigeration. Multiple groups have used this technique to reach temperatures around 1 mK, with a current lowest temperature below 0.5 mK.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا