We compute the full next-to-leading order supersymmetric (SUSY) electroweak (EW) and SUSY-QCD corrections to the decays of CP-odd NMSSM Higgs bosons into stop pairs. In our numerical analysis we also present the decay of the heavier stop into the lighter stop and an NMSSM CP-odd Higgs boson. Both the EW and the SUSY-QCD corrections are found to be significant and have to be taken into account for a proper prediction of the decay widths.
We study the Higgs sector of the next-to-minimal supersymmetric standard model (NMSSM) with explicit CP violation at the one-loop level, where the radiative corrections due to the quarks and squarks of the third generation are taken into account. We
expect that, within a reasonable region of the parameter space of the present model, at least one of five neutral Higgs bosons may be produced at the future $e^+ e^-$ International Linear Collider (ILC) with $sqrt{s} = 500$ GeV, with cross section larger than 12 fb, 15 fb, and 1.5 fb, respectively, via the Higgs-strahlung process, the $WW$ fusion process, and the $ZZ$ fusion process. We find that the effect of the CP phase in the present model yields significant influences upon the production cross sections of the five neutral Higgs bosons. We also study the decay modes of the five neutral Higgs bosons to find that their decay widths are similarly affected by the CP phase. Some of the decay modes in the present model behave differently from those of the Standard Model.
The energy-energy correlation (EEC) function in $e^+e^-$ annihilation is currently the only QCD event shape observable for which we know the full analytic result at the next-to-leading order (NLO). In this work we calculate the EEC observable for glu
on initiated Higgs decay analytically at NLO in the Higgs Effective Field Theory (HEFT) framework and provide the full results expressed in terms of classical polylogarithms, including the asymptotic behavior in the collinear and back-to-back limits. This observable can be, in principle, measured at the future $e^+e^-$ colliders such as CEPC, ILC, FCC-ee or CLIC. It provides an interesting opportunity to simultaneously probe our understanding of the strong and Higgs sectors and can be used for the determinations of the strong coupling.
The total cross section for Higgs production in bottom-quark annihilation is evaluated at next-to-next-to-leading order (NNLO) in QCD. This is the first time that all terms at order alpha_s^2 are taken into account. We find a greatly reduced scale de
pendence with respect to lower order results, for both the factorization and the renormalization scales. The behavior of the result is consistent with earlier determinations of the appropriate factorization scale for this process of mu_F ~ M_H/4, and supports the validity of the bottom parton density approach for computing the total inclusive rate. We present precise predictions for the cross section at the Tevatron and the LHC.
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the
GLAP and BFKL kernels (including running-coupling effects to all orders) and on small-x factorization schemes. We present the result in various schemes, relevant both for applications to the BFKL equation and to small-x evolution of parton distributions.
We provide the two-loop corrections to the Higgs boson masses of the CP-violating NMSSM in the Feynman diagrammatic approach with vanishing external momentum at ${cal O} (alpha_t alpha_s)$. The adopted renormalization scheme is a mixture between $ove
rline{text{DR}}$ and on-shell conditions. Additionally, the renormalization of the top/stop sector is provided both for the $overline{text{DR}}$ and the on-shell scheme. The calculation is performed in the gaugeless limit. We find that the two-loop corrections compared to the one-loop corrections are of the order of 5-10%, depending on the top/stop renormalization scheme. The theoretical error on the Higgs boson masses is reduced due to the inclusion of these higher order corrections.