ﻻ يوجد ملخص باللغة العربية
We investigate how galaxies in VIPERS (the VIMOS Public Extragalactic Redshift Survey) inhabit the cosmological density field by examining the correlations across the observable parameter space of galaxy properties and clustering strength. The high-dimensional analysis is made manageable by the use of group-finding and regression tools. We find that the major trends in galaxy properties can be explained by a single parameter related to stellar mass. After subtracting this trend, residual correlations remain between galaxy properties and the local environment pointing to complex formation dependencies. As a specific application of this work we build subsamples of galaxies with specific clustering properties for use in cosmological tests.
A diverse range of dust attenuation laws is found in star-forming galaxies. In particular, Tress et al. (2018) studied the SHARDS survey to constrain the NUV bump strength (B) and the total-to selective ratio (Rv) of 1,753 star-forming galaxies in th
The basic properties of galaxies can be affected by both nature (internal processes) or nurture (interactions and effects of environment). Deconvolving the two effects is an important current effort in astrophysics. Observed properties of a sample of
We study the X-ray spectra of a sample of 19 obscured, optically-selected Seyfert galaxies (Sy 1.8, 1.9 and 2) in the local universe ($d leq 175$~Mpc), drawn from the CfA Seyfert sample. Our analysis is driven by the high sensitivity of NuSTAR in the
We use a new fiber spectroscopic survey of 12 nearby, poor groups of galaxies to examine the dynamics and evolution of galaxies in these common, but poorly studied, environments. Some of our conclusions are: (1) The nine groups in our sample with dif
We describe the construction and general features of VIPERS, the VIMOS Public Extragalactic Redshift Survey. This `Large Programme has been using the ESO VLT with the aim of building a spectroscopic sample of ~100,000 galaxies with i_{AB}<22.5 and 0.