ﻻ يوجد ملخص باللغة العربية
The infinite Density Matrix Renormalisation Group (iDMRG) algorithm is a highly successful numerical algorithm for the study of low-dimensional quantum systems, and is also frequently used to initialise the more popular finite DMRG algorithm. Implementations of both finite and infinite DMRG frequently incorporate support for the protection and exploitation of symmetries of the Hamiltonian. In common with other variational tensor network algorithms, convergence of iDMRG to the ground state is not guaranteed, with the risk that the algorithm may become stuck in a local minimum. In this paper I demonstrate the existence of a particularly harmful class of physically irrelevant local minima affecting both iDMRG and to a lesser extent also infinite Time-Evolving Block Decimation (iTEBD), for which the ground state is compatible with the protected symmetries of the Hamiltonian but cannot be reached using the conventional iDMRG or iTEBD algorithms. I describe a modified iDMRG algorithm which evades these local minima, and which also admits a natural interpretation on topologically ordered systems with a boundary.
Topological phenomena are commonly studied in phases of matter which are separated from a trivial phase by an unavoidable quantum phase transition. This can be overly restrictive, leaving out scenarios of practical relevance -- similar to the distinc
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demons
Protected zero modes in quantum physics traditionally arise in the context of ground states of many-body Hamiltonians. Here we study the case where zero modes exist in the center of a reflection-symmetric many-body spectrum, giving rise to the notion
The second law of thermodynamics points to the existence of an `arrow of time, along which entropy only increases. This arises despite the time-reversal symmetry (TRS) of the microscopic laws of nature. Within quantum theory, TRS underpins many inter
One of the cornerstones for topological quantum computations is the Majorana zero mode, which has been intensively searched in fractional quantum Hall systems and topological superconductors. Several recent works suggest that such an exotic mode can