ترغب بنشر مسار تعليمي؟ اضغط هنا

MOA-2007-BLG-197: Exploring the brown dwarf desert

171   0   0.0 ( 0 )
 نشر من قبل Cl\\'ement Ranc
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the analysis of MOA-2007-BLG-197Lb, the first brown dwarf companion to a Sun-like star detected through gravitational microlensing. The event was alerted and followed-up photometrically by a network of telescopes from the PLANET, MOA, and uFUN collaborations, and observed at high angular resolution using the NaCo instrument at the VLT. From the modelling of the microlensing light curve, we derived the binary lens separation in Einstein radius units (s~1.13) and a mass ratio of (4.732+/-0.020)x10^{-2}. Annual parallax, lens orbital motion and finite source effects were included in the models. To recover the lens systems physical parameters, we combined the resulting light curve best-fit parameters with (J,H,Ks) magnitudes obtained with VLT NaCo and calibrated using IRSF and 2MASS data. We derived a lens total mass of 0.86+/-0.04 Msun and a lens distance of 4.2+/-0.3 kpc. We find that the companion of MOA-2007-BLG-197L is a brown dwarf of 41+/-2 Mjup observed at a projected separation of 4.3+/-0.1 AU, and orbits a 0.82+/-0.04 Msun G-K dwarf star. We study the statistical properties of this population of brown dwarfs detected by microlensing, transit, radial velocity, and direct imaging (most of these objects orbit solar-type stars), and we performed a two-dimensional, non-parametric probability density distribution fit to the data, which draws a structured brown dwarf landscape. We confirm the existence of a region that is strongly depleted in objects at short periods and intermediate masses (P<30 d, M~30-60 Mjup), but also find an accumulation of objects around P~500 d and M~20 Mjup, as well as another depletion region at long orbital periods (P>500 d) and high masses (M>50 Mjup). While these data provide important clues on mechanisms of brown dwarfs formation, more data are needed to establish their relative importance, in particular as a function of host star mass.



قيم البحث

اقرأ أيضاً

We present an analysis of microlensing event OGLE-2016-BLG-0693, based on the survey-only microlensing observations by the OGLE and KMTNet groups. In order to analyze the light curve, we consider the effects of parallax, orbital motion, and baseline slope, and also refine the result using a Galactic model prior. From the microlensing analysis, we find that the event is a binary composed of a low-mass brown dwarf 49+-20 M_J companion and a K- or G-dwarf host, which lies at a distance 5.0+-0.6 kpc toward the Galactic bulge. The projected separation between the brown dwarf and its host star is less than 5 AU, and thus it is likely that the brown dwarf companion is located in the brown dwarf desert.
We present an analysis of the anomalous microlensing event, MOA-2010-BLG-073, announced by the Microlensing Observations in Astrophysics survey on 2010-03-18. This event was remarkable because the source was previously known to be photometrically v ariable. Analyzing the pre-event source lightcurve, we demonstrate that it is an irregular variable over time scales >200d. Its dereddened color, $(V-I)_{S,0}$, is 1.221$pm$0.051mag and from our lens model we derive a source radius of 14.7$pm$1.3 $R_{odot}$, suggesting that it is a red giant star. We initially explored a number of purely microlensing models for the event but found a residual gradient in the data taken prior to and after the event. This is likely to be due to the variability of the source rather than part of the lensing event, so we incorporated a slope parameter in our model in order to derive the true parameters of the lensing system. We find that the lensing system has a mass ratio of q=0.0654$pm$0.0006. The Einstein crossing time of the event, $T_{rm{E}}=44.3$pm$0.1d, was sufficiently long that the lightcurve exhibited parallax effects. In addition, the source trajectory relative to the large caustic structure allowed the orbital motion of the lens system to be detected. Combining the parallax with the Einstein radius, we were able to derive the distance to the lens, $D_L$=2.8$pm$0.4kpc, and the masses of the lensing objects. The primary of the lens is an M-dwarf with $M_{L,p}$=0.16$pm0.03M_{odot}$ while the companion has $M_{L,s}$=11.0$pm2.0M_{rm{J}}$ putting it in the boundary zone between planets and brown dwarfs.
We report the discovery and the analysis of the short timescale binary-lens microlensing event, MOA-2015-BLG-337. The lens system could be a planetary system with a very low mass host, around the brown dwarf/planetary mass boundary, or a brown dwarf binary. We found two competing models that explain the observed light curves with companion/host mass ratios of q~0.01 and ~0.17, respectively. From the measurement of finite source effects in the best-fit planetary model, we find a relatively small angular Einstein radius of theta_E ~ 0.03 mas which favors a low mass lens. We conduct a Bayesian analysis to obtain the probability distribution of the lens properties. The results for the planetary models strongly depend on the minimum mass, M_min, in the assumed mass function. In summary, there are two solutions of the lens system: (1) a brown dwarf/planetary mass boundary object orbited by a super-Neptune (the planetary model with M_min=0.001 M_sun) and (2) a brown dwarf binary (the binary model). If the planetary models is correct, this system can be one of a new class of planetary system, having a low host mass and also a planetary mass ratio (q <0.03) between the host and its companion. The discovery of the event is important for the study of planetary formation in very low mass objects. In addition, it is important to consider all viable solutions in these kinds of ambiguous events in order for the future comprehensive statistical analyses of planetary/binary microlensing events.
We present an adaptive optics (AO) analysis of images from the Keck-II telescope NIRC2 instrument of the planetary microlensing event MOA-2009-BLG-319. The $sim$10 year baseline between the event and the Keck observations allows the planetary host st ar to be detected at a separation of $66.5pm 1.7,$mas from the source star, consistent with the light curve model prediction. The combination of the host star brightness and light curve parameters yield host star and planet masses of M_host = 0.514 $pm$ 0.063M_Sun and m_p = 66.0 $pm$ 8.1M_Earth at a distance of $D_L = 7.0 pm 0.7,$kpc. The star-planet projected separation is $2.03 pm 0.21,$AU. The planet-star mass ratio of this system, $q = (3.857 pm 0.029)times 10^{-4}$, places it in the predicted planet desert at $10^{-4} < q < 4times 10^{-4}$ according to the runaway gas accretion scenario of the core accretion theory. Seven of the 30 planets in the Suzuki et al. (2016) sample fall in this mass ratio range, and this is the third with a measured host mass. All three of these host stars have masses of 0.5 $leq$ M_host/M_Sun $leq$ 0.7, which implies that this predicted mass ratio gap is filled with planets that have host stars within a factor of two of 1M_Sun. This suggests that runaway gas accretion does not play a major role in determining giant planet masses for stars somewhat less massive than the Sun. Our analysis has been accomplished with a modified DAOPHOT code that has been designed to measure the brightness and positions of closely blended stars. This will aid in the development of the primary method that the Nancy Grace Roman Space Telescope mission will use to determine the masses of microlens planets and their hosts.
We present Keck/NIRC2 adaptive optics imaging of planetary microlensing event MOA-2007-BLG-400 that resolves the lens star system from the source. We find that the MOA-2007-BLG-400L planetary system consists of a $1.71pm 0.27 M_{rm Jup}$ planet orbit ing a $0.69pm 0.04M_{odot}$ K-dwarf host star at a distance of $6.89pm 0.77,$kpc from the Sun. So, this planetary system probably resides in the Galactic bulge. The planet-host star projected separation is only weakly constrained due to the close-wide light curve degeneracy; the 2$sigma$ projected separation range is 0.6--$7.2,$AU. This host mass is at the top end of the range of masses predicted by a standard Bayesian analysis that assumes that all stars have an equal chance of hosting a star of the observed mass ratio. This and the similar result for event MOA-2013-BLG-220 suggests that more massive stars may be more likely to host planets with a mass ratio in the $0.002 < q < 0.004$ range that orbit beyond the snow line. These results also indicate the importance of host star mass measurements for exoplanets found by microlensing. The microlensing survey imaging data from NASAs Nancy Grace Roman Space Telescope (formerly WFIRST) mission will be doing mass measurements like this for a huge number of planetary events. This host lens is the highest contrast lens-source detected in microlensing mass measurement analysis (the lens being 10$times$ fainter than the source). We present an improved method of calculating photometry and astrometry uncertainties based on the Jackknife method, which produces more accurate errors that are $sim$$2.5 times$ larger than previous estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا