ﻻ يوجد ملخص باللغة العربية
We present results of experiments to reproduce the bottom-up formation of covalently bonded molecular nanostructures from single molecular building blocks, previously demonstrated on various coinage metal surfaces, on a technologically more relevant semiconductor surface: Ge(001). Chlorine was established as the most stable passivation agent for this surface, successfully enabling diffusion of the organic molecular building blocks. Subsequent thermal activation of the intermolecular dehalogenation reactions on this surface resulted in the desired covalently connected molecules, however showing poor network quality when compared to those formed on noble metal substrates.
We study theoretically and experimentally the infrared (IR) spectrum of an adamantane monolayer on a Au(111) surface. Using a new STM-based IR spectroscopy technique (IRSTM) we are able to measure both the nanoscale structure of an adamantane monolay
Mn has been found to self-assemble into atomic chains running perpendicular to the surface dimer reconstruction on Si(001). They differ from other atomic chains by a striking asymmetric appearance in filled state scanning tunneling microscopy (STM) i
We report the effects of variation in length on the electronic structure of CdSe nanorods derived from atomic clusters and passivated by fictitious hydrogen atoms. These nanorods are augmented by attaching gold clusters at both the ends to form a nan
We investigate the band structure and topological phases of silicene embedded on halogenated Si(111) surface, by virtue of density functional theory and tight-binding calculations.Our results show that the Dirac character of low energy excitations in
Recently the oxygen-reconstructed tantalum surface Ta(001)-p(3$times$3)-O has experienced considerable attention due its use as a potential platform for Majorana physics in adatom chains. Experimental studies using scanning tunneling microscopy and s