ﻻ يوجد ملخص باللغة العربية
We study the muon $(g-2)_{mu}$ anomaly in light of neutralino dark matter and the LHC. We scan the MSSM parameters relevant to $(g-2)_{mu}$ and focus on three distinct cases with different neutralino compositions. We find that the 2$sigma$ range of $(g-2)_{mu}$ requires the smuon ($tilde{mu}_1$) to be lighter than $sim$ 500 (1000) GeV for $tan beta=10,(50)$. Correspondingly the two lightest neutralinos, $tilde{chi}_{1}^0, tilde{chi}_{2}^0$, have to be lighter than $sim$ 300 (650) GeV and 900 (1000) GeV respectively. We explore the prospects of searching the light smuon and neutralinos at the LHC, in conjunction with constraints arising from indirect dark matter (DM) detection experiments. The upcoming run of the LHC will be able to set $95%$ CL exclusion limit on $M_{tilde{chi}_{2}^0}$ ($sim 475 - 1300$ GeV) and $m_{tilde{l}}$ ($sim 670-775$ GeV) with $M_{tilde{chi}_{1}^0} sim 100-250$ GeV at 3000 fb$^{-1}$ luminosity in multi-lepton + missing energy channel.
In view of the latest LEP data we consider the effects of charginos and neutralinos on the two-photon and bbbar signatures of the Higgs at the LHC. Assuming the usual GUT inspired relation between M_1 and M_2 we show that there are only small regions
The discrepancy between the measured value and the Standard Model prediction for the muon anomalous magnetic moment is one of the important issues in the particle physics. In this paper, we consider a two Higgs doublet model (2HDM) where the extra Hi
We briefly review the current status of the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. Based on various model calculations in the literature, we obtain the estimate a_{mu}^{HLbL} = (102 pm 39) x 10^{
Supersymmetric models with sub-TeV charginos and sleptons have been a candidate for the origin of the long-standing discrepancy in the muon anomalous magnetic moment (g-2). By gathering all the available LHC Run 2 results, we investigate the latest L
In this talk we review the recent progress on the numerical determination of the Hadronic Light-by-Light contribution to the anomalous magnetic moment of the muon and we discuss the role of experimental data on the accuracy of its determination. Spec