ترغب بنشر مسار تعليمي؟ اضغط هنا

Far-infrared and accretion luminosities of the present-day active galactic nuclei

105   0   0.0 ( 0 )
 نشر من قبل Kenta Matsuoka
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the relation between star formation (SF) and black hole accretion luminosities, using a sample of 492 type-2 active galactic nuclei (AGNs) at z < 0.22, which are detected in the far-infrared (FIR) surveys with AKARI and Herschel. We adopt FIR luminosities at 90 and 100 um as SF luminosities, assuming the proposed linear proportionality of star formation rate with FIR luminosities. By estimating AGN luminosities from [OIII]5007 and [OI]6300 emission lines, we find a positive linear trend between FIR and AGN luminosities over a wide dynamical range. This result appears to be inconsistent with the recent reports that low-luminosity AGNs show essentially no correlation between FIR and X-ray luminosities, while the discrepancy is likely due to the Malmquist and sample selection biases. By analyzing the spectral energy distribution, we find that pure-AGN candidates, of which FIR radiation is thought to be AGN-dominated, show significantly low-SF activities. These AGNs hosted by low-SF galaxies are rare in our sample (~ 1%). However, the low fraction of low-SF AGN is possibly due to observational limitations since the recent FIR surveys are insufficient to examine the population of high-luminosity AGNs hosted by low-SF galaxies.



قيم البحث

اقرأ أيضاً

139 - K.I. Caputi 2014
The remarkable progress made in infrared (IR) astronomical instruments over the last 10-15 years has radically changed our vision of the extragalactic IR sky, and overall understanding of galaxy evolution. In particular, this has been the case for th e study of active galactic nuclei (AGN), for which IR observations provide a wealth of complementary information that cannot be derived from data in other wavelength regimes. In this review, I summarize the unique contribution that IR astronomy has recently made to our understanding of AGN and their role in galaxy evolution, including both physical studies of AGN at IR wavelengths, and the search for AGN among IR galaxies in general. Finally, I identify and discuss key open issues that it should be possible to address with forthcoming IR telescopes.
Disks of gas accreting onto supermassive black holes are thought to power active galactic nuclei (AGN). Stars may form in gravitationally unstable regions of these disks, or may be captured from nuclear star clusters. Because of the dense gas environ ment, the evolution of such embedded stars can diverge dramatically from those in the interstellar medium. This work extends previous studies of stellar evolution in AGN disks by exploring a variety of ways that accretion onto stars in AGN disks may differ from Bondi accretion. We find that tidal effects from the supermassive black hole significantly alter the evolution of stars in AGN disks, and that our results do not depend critically on assumptions about radiative feedback on the accretion stream. Thus, in addition to depending on $rho/c_s^3$, the fate of stars in AGN disks depends sensitively on the distance to and mass of the supermassive black hole. This affects where in the disk stellar explosions occur, where compact remnants form and potentially merge to produce gravitational waves, and where different types of chemical enrichment take place.
131 - Ryan C. Hickox 2018
Active Galactic Nuclei (AGN) are powered by the accretion of material onto a supermassive black hole (SMBH), and are among the most luminous objects in the Universe. However, the huge radiative power of most AGN cannot be seen directly, as the accret ion is hidden behind gas and dust that absorbs many of the characteristic observational signatures. This obscuration presents an important challenge for uncovering the complete AGN population and understanding the cosmic evolution of SMBHs. In this review we describe a broad range of multi-wavelength techniques that are currently employed to identify obscured AGN, and assess the reliability and completeness of each technique. We follow with a discussion of the demographics of obscured AGN activity, explore the nature and physical scales of the obscuring material, and assess the implications of obscured AGN for observational cosmology. We conclude with an outline of the prospects for future progress from both observations and theoretical models, and highlight some of the key outstanding questions.
83 - Hajime Inoue 2021
We study accretion environments of active galactic nuclei when a super-massive black hole wanders in a circum-nuclear region and passes through an interstellar medium there. It is expected that a Bondi-Hoyle-Lyttleton type accretion of the interstell ar matter takes place and an accretion stream of matter trapped by the black hole gravitational field appears from a tail shock region. Since the trapped matter is likely to have a certain amount of specific angular momentum, the accretion stream eventually forms an accretion ring around the black hole. According to the recent study, the accretion ring consists of a thick envelope and a thin core, and angular momenta are transfered from the inner side facing to the black hole to the opposite side respectively in the envelope and the core. As a result, a thick accretion flow and a thick excretion flow extend from the envelope, and a thin accretion disk and a thin excretion disk do from the core. The thin excretion disk is predicted to terminate at some distance forming an excretion ring, while the thick excretion flow is considered to become a super-sonic wind flowing to the infinity. The thick excretion flow from the accretion ring is expected to interact with the accretion stream toward the accretion ring and to be collimated to bi-polar cones. These pictures provide a likely guide line to interpret the overall accretion environments suggested from observations.
We review the properties of the established Scaling Relations (SRs) of galaxies and active galactic nuclei (AGN), focusing on their origin and expected evolution back in time, providing a short history of the most important progresses obtained up to now and discussing the possible future studies. We also try to connect the observed SRs with the physical mechanisms behind them, examining to what extent current models reproduce the observational data. The emerging picture clarifies the complexity intrinsic to the galaxy formation and evolution process as well as the basic uncertainties still affecting our knowledge of the AGN phenomenon. At the same time, however, it suggests that the detailed analysis of the SRs can profitably contribute to our understanding of galaxies and AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا