ترغب بنشر مسار تعليمي؟ اضغط هنا

On the universality of luminosity-metallicity and mass-metallicity relations for compact star-forming galaxies at redshifts 0 < z < 3

202   0   0.0 ( 0 )
 نشر من قبل Yuri Izotov I.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. I. Izotov




اسأل ChatGPT حول البحث

We study relations between global characteristics of low-redshift (0 < z < 1) compact star-forming galaxies, including absolute optical magnitudes, Hbeta emission-line luminosities (or equivalently star-formation rates), stellar masses, and oxygen abundances. The sample consists of 5182 galaxies with high-excitation HII regions selected from the SDSS DR7 and SDSS/BOSS DR10 surveys adopting a criterion [OIII]4959/Hbeta > 1. These data were combined with the corresponding data for high-redshift (2 < z < 3) star-forming galaxies. We find that in all diagrams low-z and high-z star-forming galaxies are closely related indicating a very weak dependence of metallicity on stellar mass, redshift, and star-formation rate. This finding argues in favour of the universal character of the global relations for compact star-forming galaxies with high-excitation HII regions over redshifts 0 < z < 3.



قيم البحث

اقرأ أيضاً

We study the origin and cosmic evolution of the mass-metallicity relation (MZR) in star-forming galaxies based on a full, numerical chemical evolution model. The model was designed to match the local MZRs for both gas and stars simultaneously. This i s achieved by invoking a time-dependent metal enrichment process which assumes either a time-dependent metal outflow with larger metal loading factors in galactic winds at early times, or a time-dependent Initial Mass Function (IMF) with steeper slopes at early times. We compare the predictions from this model with data sets covering redshifts 0<z<3.5. The data suggests a two-phase evolution with a transition point around z ~ 1.5. Before that epoch the MZRgas has been evolving parallel with no evolution in the slope. After z ~ 1.5 the MZRgas started flattening until today. We show that the predictions of both the variable metal outflow and the variable IMF model match these observations very well. Our model also reproduces the evolution of the main sequence, hence the correlation between galaxy mass and star formation rate. We also compare the predicted redshift evolution of the MZRstar with data from the literature. As the latter mostly contains data of massive, quenched early-type galaxies, stellar metallicities at high redshifts tend to be higher in the data than predicted by our model. Data of stellar metallicities of lower-mass (< 10^11 solar mass), star-forming galaxies at high redshift is required to test our model.
We present a comprehensive study of the relations between gas kinematics, metallicity, and stellar mass in a sample of 82 GRB-selected galaxies using absorption and emission methods. We find the velocity widths of both emission and absorption profile s to be a proxy of stellar mass. We also investigate the velocity-metallicity correlation and its evolution with redshift and find the correlation derived from emission lines to have a significantly smaller scatter compared to that found using absorption lines. Using 33 GRB hosts with measured stellar mass and metallicitiy, we study the mass-metallicity relation for GRB host galaxies in a stellar mass range of $10^{8.2} M_{odot}$ to $10^{11.1} M_{odot}$ and a redshift range of $ zsim 0.3-3.4$. The GRB-selected galaxies appear to track the mass-metallicity relation of star forming galaxies but with an offset of 0.15 towards lower metallicities. This offset is comparable with the average error-bar on the metallicity measurements of the GRB sample and also the scatter on the MZ relation of the general population. It is hard to decide whether this relatively small offset is due to systematic effects or the intrinsic nature of GRB hosts. We also investigate the possibility of using absorption-line metallicity measurements of GRB hosts to study the mass-metallicity relation at high redshifts. Our analysis shows that the metallicity measurements from absorption methods can significantly differ from emission metallicities and assuming identical measurements from the two methods may result in erroneous conclusions.
In the local universe, there is good evidence that, at a given stellar mass M, the gas-phase metallicity Z is anti-correlated with the star formation rate (SFR) of the galaxies. It has also been claimed that the resulting Z(M,SFR) relation is invaria nt with redshift - the so-called Fundamental Metallicity Relation (FMR). Given a number of difficulties in determining metallicities, especially at higher redshifts, the form of the Z(M,SFR) relation and whether it is really independent of redshift is still very controversial. To explore this issue at z>2, we used VLT-SINFONI and Subaru-MOIRCS near-infrared spectroscopy of 20 zCOSMOS-deep galaxies at 2.1<z<2.5 to measure the strengths of up to five emission lines: [OII], Hbeta, [OIII], Halpha, and [NII]. This near-infrared spectroscopy enables us to derive O/H metallicities, and also SFRs from extinction corrected Halpha measurements. We find that the mass-metallicity relation (MZR) of these star-forming galaxies at z~2.3 is lower than the local SDSS MZR by a factor of three to five, a larger change than found by Erb et al. (2006) using [NII]/Halpha-based metallicities from stacked spectra. We discuss how the different selections of the samples and metallicity calibrations used may be responsible for this discrepancy. The galaxies show direct evidence that the SFR is still a second parameter in the mass-metallicity relation at these redshifts. However, determining whether the Z(M,SFR) relation is invariant with epoch depends on the choice of extrapolation used from local samples, because z>2 galaxies of a given mass have much higher SFRs than the local SDSS galaxies. We find that the zCOSMOS galaxies are consistent with a non-evolving FMR if we use the physically-motivated formulation of the Z(M,SFR) relation from Lilly et al. (2003), but not if we use the empirical formulation of Mannucci et al. (2010).
We report on the gas-phase metallicity gradients of a sample of 264 star-forming galaxies at 0.6 < z < 2.6, measured through deep near-infrared Hubble Space Telescope slitless spectroscopy. The observations include 12-orbit depth Hubble/WFC3 G102 gri sm spectra taken as a part of the CANDELS Lya Emission at Reionization (CLEAR) survey, and archival WFC3 G102+G141 grism spectra overlapping the CLEAR footprint. The majority of galaxies (84%) in this sample are consistent with a zero or slightly positive metallicity gradient across the full mass range probed (8.5 < log M_*/M_sun < 10.5). We measure the intrinsic population scatter of the metallicity gradients, and show that it increases with decreasing stellar mass---consistent with previous reports in the literature, but confirmed here with a much larger sample. To understand the physical mechanisms governing this scatter, we search for correlations between the observed gradient and various stellar population properties at fixed mass. However, we find no evidence for a correlation with the galaxy properties we consider---including star-formation rates, sizes, star-formation rate surface densities, and star-formation rates per gravitational potential energy. We use the observed weakness of these correlations to provide material constraints for predicted intrinsic correlations from theoretical models.
We study the relationship between stellar mass, star formation rate (SFR),ionization state, and gas-phase metallicity for a sample of 41 normal star-forming galaxies at $3 lesssim z lesssim 3.7$. The gas-phase oxygen abundance, ionization parameter, and electron density of ionized gas are derived from rest-frame optical strong emission lines measured on near-infrared spectra obtained with Keck/MOSFIRE. We remove the effect of these strong emission lines in the broad-band fluxes to compute stellar masses via spectral energy distribution fitting, while the SFR is derived from the dust-corrected ultraviolet luminosity. The ionization parameter is weakly correlated with the specific SFR, but otherwise the ionization parameter and electron density do not correlate with other global galaxy properties such as stellar mass, SFR, and metallicity. The mass-metallicity relation (MZR) at $zsimeq3.3$ shows lower metallicity by $simeq 0.7$ dex than that at $z=0$ at the same stellar mass. Our sample shows an offset by $simeq 0.3$ dex from the locally defined mass-metallicity-SFR relation, indicating that simply extrapolating such relation to higher redshift may predict an incorrect evolution of MZR. Furthermore, within the uncertainties we find no SFR-metallicity correlation, suggesting a less important role of SFR in controlling the metallicity at high redshift. We finally investigate the redshift evolution of the MZR by using the model by Lilly et al. (2013), finding that the observed evolution from $z=0$ to $zsimeq3.3$ can be accounted for by the model assuming a weak redshift evolution of the star formation efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا