ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended fast search clustering algorithm: widely density clusters, no density peaks

47   0   0.0 ( 0 )
 نشر من قبل Zhang WenKai
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

CFSFDP (clustering by fast search and find of density peaks) is recently developed density-based clustering algorithm. Compared to DBSCAN, it needs less parameters and is computationally cheap for its non-iteration. Alex. at al have demonstrated its power by many applications. However, CFSFDP performs not well when there are more than one density peak for one cluster, what we name as no density peaks. In this paper, inspired by the idea of a hierarchical clustering algorithm CHAMELEON, we propose an extension of CFSFDP,E_CFSFDP, to adapt more applications. In particular, we take use of original CFSFDP to generating initial clusters first, then merge the sub clusters in the second phase. We have conducted the algorithm to several data sets, of which, there are no density peaks. Experiment results show that our approach outperforms the original one due to it breaks through the strict claim of data sets.

قيم البحث

اقرأ أيضاً

In this paper we revisit the kernel density estimation problem: given a kernel $K(x, y)$ and a dataset of $n$ points in high dimensional Euclidean space, prepare a data structure that can quickly output, given a query $q$, a $(1+epsilon)$-approximati on to $mu:=frac1{|P|}sum_{pin P} K(p, q)$. First, we give a single data structure based on classical near neighbor search techniques that improves upon or essentially matches the query time and space complexity for all radial kernels considered in the literature so far. We then show how to improve both the query complexity and runtime by using recent advances in data-dependent near neighbor search. We achieve our results by giving a new implementation of the natural importance sampling scheme. Unlike previous approaches, our algorithm first samples the dataset uniformly (considering a geometric sequence of sampling rates), and then uses existing approximate near neighbor search techniques on the resulting smaller dataset to retrieve the sampled points that lie at an appropriate distance from the query. We show that the resulting sampled dataset has strong geometric structure, making approximate near neighbor search return the required samples much more efficiently than for worst case datasets of the same size. As an example application, we show that this approach yields a data structure that achieves query time $mu^{-(1+o(1))/4}$ and space complexity $mu^{-(1+o(1))}$ for the Gaussian kernel. Our data dependent approach achieves query time $mu^{-0.173-o(1)}$ and space $mu^{-(1+o(1))}$ for the Gaussian kernel. The data dependent analysis relies on new techniques for tracking the geometric structure of the input datasets in a recursive hashing process that we hope will be of interest in other applications in near neighbor search.
154 - Jianguo Chen , Philip S. Yu 2019
As one type of efficient unsupervised learning methods, clustering algorithms have been widely used in data mining and knowledge discovery with noticeable advantages. However, clustering algorithms based on density peak have limited clustering effect on data with varying density distribution (VDD), equilibrium distribution (ED), and multiple domain-density maximums (MDDM), leading to the problems of sparse cluster loss and cluster fragmentation. To address these problems, we propose a Domain-Adaptive Density Clustering (DADC) algorithm, which consists of three steps: domain-adaptive density measurement, cluster center self-identification, and cluster self-ensemble. For data with VDD features, clusters in sparse regions are often neglected by using uniform density peak thresholds, which results in the loss of sparse clusters. We define a domain-adaptive density measurement method based on K-Nearest Neighbors (KNN) to adaptively detect the density peaks of different density regions. We treat each data point and its KNN neighborhood as a subgroup to better reflect its density distribution in a domain view. In addition, for data with ED or MDDM features, a large number of density peaks with similar values can be identified, which results in cluster fragmentation. We propose a cluster center self-identification and cluster self-ensemble method to automatically extract the initial cluster centers and merge the fragmented clusters. Experimental results demonstrate that compared with other comparative algorithms, the proposed DADC algorithm can obtain more reasonable clustering results on data with VDD, ED and MDDM features. Benefitting from a few parameter requirements and non-iterative nature, DADC achieves low computational complexity and is suitable for large-scale data clustering.
Measuring graph clustering quality remains an open problem. To address it, we introduce quality measures based on comparisons of intra- and inter-cluster densities, an accompanying statistical test of the significance of their differences and a step- by-step routine for clustering quality assessment. Our null hypothesis does not rely on any generative model for the graph, unlike modularity which uses the configuration model as a null model. Our measures are shown to meet the axioms of a good clustering quality function, unlike the very commonly used modularity measure. They also have an intuitive graph-theoretic interpretation, a formal statistical interpretation and can be easily tested for significance. Our work is centered on the idea that well clustered graphs will display a significantly larger intra-cluster density than inter-cluster density. We develop tests to validate the existence of such a cluster structure. We empirically explore the behavior of our measures under a number of stress test scenarios and compare their behavior to the commonly used modularity and conductance measures. Empirical stress test results confirm that our measures compare very favorably to the established ones. In particular, they are shown to be more responsive to graph structure and less sensitive to sample size and breakdowns during numerical implementation and less sensitive to uncertainty in connectivity. These features are especially important in the context of larger data sets or when the data may contain errors in the connectivity patterns.
Time Projection Chambers (TPCs) working in combination with Gas Electron Multipliers (GEMs) produce a very sensitive detector capable of observing low energy events. This is achieved by capturing photons generated during the GEM electron multiplicati on process by means of a high-resolution camera. The CYGNO experiment has recently developed a TPC Triple GEM detector coupled to a low noise and high spatial resolution CMOS sensor. For the image analysis, an algorithm based on an adapted version of the well-known DBSCAN was implemented, called iDBSCAN. In this paper a description of the iDBSCAN algorithm is given, including test and validation of its parameters, and a comparison with DBSCAN itself and a widely used algorithm known as Nearest Neighbor Clustering (NNC). The results show that the adapted version of DBSCAN is capable of providing full signal detection efficiency and very good energy resolution while improving the detector background rejection.
This paper revisits the problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets. Computing an ECDF at one evaluation point requires $mathcal{O}(N)$ operations on a dataset composed of $N$ da ta points. Therefore, a direct evaluation of ECDFs at $N$ evaluation points requires a quadratic $mathcal{O}(N^2)$ operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a $mathcal{O}(N{log}N)$ complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-and-conquer principle, with a $mathcal{O}(Nlog(N)^{(d-1){vee}1})$ complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general $d$-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, the paper establishes a direct connection between cumulative distribution functions and kernel density estimation (KDE) for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا