ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Multiwavelength AGN Variability with Swift Archival Data

84   0   0.0 ( 0 )
 نشر من قبل Jonathan Gelbord
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jonathan Gelbord




اسأل ChatGPT حول البحث

We are conducting an archival Swift program to measure multiwavelength variability in active galactic nuclei (AGN). This variability information will provide constraints on the geometry, physical conditions and processes of the structures around the central black holes that emit and reprocess the observed flux. Among our goals are: (1) to produce a catalog of type 1 AGN with time-resolved multi-wavelength data; (2) to characterize variability in the optical, UV and X-ay bands as well as changes in spectral slope; (3) to quantify the impact of variability on multi-wavelength properties; and (4) to measure correlated variability between bands. Our initial efforts have revealed a UVOT calibration issue that can cause a few percent of measured UV fluxes to be anomalously low, by up to 30%.



قيم البحث

اقرأ أيضاً

We present observations of the BL Lac object 1ES 0414+009 in the >200 GeV gamma-ray band by the VERITAS array of Cherenkov telescopes. 1ES 0414+009 was observed by VERITAS between January 2008 and February 2011, resulting in 56.2 hours of good qualit y pointed observations. These observations resulted in a detection of 822 events from the source corresponding to a statistical significance of 6.4 standard deviations (6.4 sigma) above the background. The source flux, showing no evidence for variability, is measured as 5.2 +/- 1.1_stat +/- 2.6_sys * 10^-12 photons cm^-2 s^-1 above 200 GeV, equivalent to approximately 2% of the Crab Nebula flux above this energy. The differential photon spectrum from 230 GeV to 850 GeV is well fit by a power law with an photon index of Gamma 3.4 +/- 0.5_stat +/- 0.3_sys and a flux normalization of 1.6 +/- 0.3_stat +/- 0.8_sys * 10^-11 photons cm^-2 s^-1 at 300 GeV. We also present multiwavelength results taken in the optical (MDM), X-ray (Swift-XRT), and GeV (Fermi-LAT) bands and use these results to construct a broadband spectral energy distribution (SED). Modeling of this SED indicates that homogenous one-zone leptonic scenarios are not adequate to describe emission from the system, with a lepto-hadronic model providing a better fit to the data.
We present contemporaneous X-ray, ultraviolet, optical and near-infrared observations of the black hole binary system, Swift J1753.5-0127, acquired in 2012 October. The UV observations, obtained with the Cosmic Origins Spectrograph on the Hubble Spac e Telescope, are the first UV spectra of this system. The dereddened UV spectrum is characterized by a smooth, blue continuum and broad emission lines of CIV and HeII. The system was stable in the UV to <10% during our observations. We estimated the interstellar reddening by fitting the 2175 A absorption feature and fit the interstellar absorption profile of Ly$alpha$ to directly measure the neutral hydrogen column density along the line of sight. By comparing the UV continuum flux to steady-state thin accretion disk models, we determined upper limits on the distance to the system as a function of black hole mass. The continuum is well fit with disk models dominated by viscous heating rather than irradiation. The broadband spectral energy distribution shows the system has declined at all wavelengths since previous broadband observations in 2005 and 2007. If we assume that the UV emission is dominated by the accretion disk the inner radius of the disk must be truncated at radii above the ISCO to be consistent with the X-ray flux, requiring significant mass loss from outflows and/or energy loss via advection into the black hole to maintain energy balance.
We identify 85 variable galaxies in the GOODS North and South fields using 5 epochs of HST ACS V-band (F606W) images spanning 6 months. The variables are identified through significant flux changes in the galaxys nucleus and represent ~2% of the surv ey galaxies. With the aim of studying the active galaxy population in the GOODS fields, we compare the variability-selected sample with X-ray and mid-IR AGN candidates. Forty-nine percent of the variables are associated with X-ray sources identified in the 2Ms Chandra surveys. Twenty-four percent of X-ray sources likely to be AGN are optical variables and this percentage increases with decreasing hardness ratio of the X-ray emission. Stacking of the non-X-ray detected variables reveals marginally significant soft X-ray emission. Forty-eight percent of mid-IR power-law sources are optical variables, all but one of which are also X-ray detected. Thus, about half of the optical variables are associated with either X-ray or mid-IR power-law emission. The slope of the power-law fit through the Spitzer IRAC bands indicates that two-thirds of the variables have BLAGN-like SEDs. Among those galaxies spectroscopically identified as AGN, we observe variability in 74% of broad-line AGNs and 15% of NLAGNs. The variables are found in galaxies extending to z~3.6. We compare the variable galaxy colors and magnitudes to the X-ray and mid-IR sample and find that the non-X-ray detected variable hosts extend to bluer colors and fainter intrinsic magnitudes. The variable AGN candidates have Eddington ratios similar to those of X-ray selected AGN.
We present results from a long-term monitoring campaign on the TeV binary LSI +61 303 with VERITAS at energies above 500 GeV, and in the 2-10 keV hard X-ray bands with RXTE and Swift, sampling nine 26.5 day orbital cycles between September 2006 and F ebruary 2008. The binary was observed by VERITAS to be variable, with all integrated observations resulting in a detection at the 8.8 sigma (2006/2007) and 7.3 sigma (2007/2008) significance level for emission above 500 GeV. The source was detected during active periods with flux values ranging from 5 to 20% of the Crab Nebula, varying over the course of a single orbital cycle. Additionally, the observations conducted in the 2007-2008 observing season show marginal evidence (at the 3.6 sigma significance level) for TeV emission outside of the apastron passage of the compact object around the Be star. Contemporaneous hard X-ray observations with RXTE and Swift show large variability with flux values typically varying between 0.5 and 3.0*10^-11 ergs cm^-2 s^-1 over a single orbital cycle. The contemporaneous X-ray and TeV data are examined and it is shown that the TeV sampling is not dense enough to detect a correlation between the two bands.
We present our investigation into the long-term variability of the X-ray obscuration and optical-UV-X-ray continuum in the Seyfert 1 galaxy NGC 5548. In 2013 and 2014, the Swift observatory monitored NGC 5548 on average every day or two, with archiva l observations reaching back to 2005, totalling about 670 ks of observing time. Both broadband spectral modelling and temporal rms variability analysis are applied to the Swift data. We disentangle the variability caused by absorption, due to an obscuring weakly-ionised outflow near the disk, from variability of the intrinsic continuum components (the soft X-ray excess and the power-law) originating from the disk and its associated coronae. The spectral model that we apply to this extensive Swift data is the global model that we derived for NGC 5548 from analysis of the stacked spectra from our multi-satellite campaign of summer 2013 (including XMM-Newton, NuSTAR and HST). The results of our Swift study show that changes in the covering fraction of the obscurer is the primary and dominant cause of variability in the soft X-ray band on timescales of 10 days to ~ 5 months. The obscuring covering fraction of the X-ray source is found to range between 0.7 and nearly 1.0. The contribution of the soft excess component to the X-ray variability is often much less than that of the obscurer, but it becomes comparable when the optical-UV continuum flares up. We find that the soft excess is consistent with being the high-energy tail of the optical-UV continuum and can be explained by warm Comptonisation: up-scattering of the disk seed photons in a warm, optically thick corona as part of the inner disk. To this date, the Swift monitoring of NGC 5548 shows that the obscurer has been continuously present in our line of sight for at least 4 years (since at least February 2012).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا