ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexisting Success Probability and Throughput of Multi-RAT Wireless Networks with Unlicensed Band Access

96   0   0.0 ( 0 )
 نشر من قبل Chun-Hung Liu
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, the coexisting success probability and throughput of a wireless network consisting of multiple subnetworks of different radio access technologies (RATs) is investigated. The coexisting success probability that is defined as the average of all success probabilities of all subnetworks is found in closed-form and it will be shown to have the concavity over the number of channels in the unlicensed band. The optimal deployment densities of all different RATs access points (APs) that maximize the coexisting success probability are shown to exist and can be found under the derived constraint on network parameters. The coexisting throughput is defined as the per-channel sum of all spectrum efficiencies of all subnetworks and numerical results show that it is significantly higher than the throughput of the unlicensed band only accessed by WiFi APs.


قيم البحث

اقرأ أيضاً

Traffic load balancing and radio resource management is key to harness the dense and increasingly heterogeneous deployment of next generation $5$G wireless infrastructure. Strategies for aggregating user traffic from across multiple radio access tech nologies (RATs) and/or access points (APs) would be crucial in such heterogeneous networks (HetNets), but are not well investigated. In this paper, we develop a low complexity solution for maximizing an $alpha$-optimal network utility leveraging the multi-link aggregation (simultaneous connectivity to multiple RATs/APs) capability of users in the network. The network utility maximization formulation has maximization of sum rate ($alpha=0$), maximization of minimum rate ($alpha to infty$), and proportional fair ($alpha=1$) as its special cases. A closed form is also developed for the special case where a user aggregates traffic from at most two APs/RATs, and hence can be applied to practical scenarios like LTE-WLAN aggregation (LWA) and LTE dual-connectivity solutions. It is shown that the required objective may also be realized through a decentralized implementation requiring a series of message exchanges between the users and network. Using comprehensive system level simulations, it is shown that optimal leveraging of multi-link aggregation leads to substantial throughput gains over single RAT/AP selection techniques.
This work studies the throughput scaling laws of ad hoc wireless networks in the limit of a large number of nodes. A random connections model is assumed in which the channel connections between the nodes are drawn independently from a common distribu tion. Transmitting nodes are subject to an on-off strategy, and receiving nodes employ conventional single-user decoding. The following results are proven: 1) For a class of connection models with finite mean and variance, the throughput scaling is upper-bounded by $O(n^{1/3})$ for single-hop schemes, and $O(n^{1/2})$ for two-hop (and multihop) schemes. 2) The $Theta (n^{1/2})$ throughput scaling is achievable for a specific connection model by a two-hop opportunistic relaying scheme, which employs full, but only local channel state information (CSI) at the receivers, and partial CSI at the transmitters. 3) By relaxing the constraints of finite mean and variance of the connection model, linear throughput scaling $Theta (n)$ is achievable with Pareto-type fading models.
68 - Wenhao Cai , Rang Liu , Yang Liu 2021
Intelligent reflecting surface (IRS) is deemed as a promising and revolutionizing technology for future wireless communication systems owing to its capability to intelligently change the propagation environment and introduce a new dimension into wire less communication optimization. Most existing studies on IRS are based on an ideal reflection model. However, it is difficult to implement an IRS which can simultaneously realize any adjustable phase shift for the signals with different frequencies. Therefore, the practical phase shift model, which can describe the difference of IRS phase shift responses for the signals with different frequencies, should be utilized in the IRS optimization for wideband and multi-band systems. In this paper, we consider an IRS-assisted multi-cell multi-band system, in which different base stations (BSs) operate at different frequency bands. We aim to jointly design the transmit beamforming of BSs and the reflection beamforming of the IRS to minimize the total transmit power subject to signal to interference-plus-noise ratio (SINR) constraints of individual user and the practical IRS reflection model. With the aid of the practical phase shift model, the influence between the signals with different frequencies is taken into account during the design of IRS. Simulation results illustrate the importance of considering the practical communication scenario on the IRS designs and validate the effectiveness of our proposed algorithm.
This letter proposes a novel random medium access control (MAC) based on a transmission opportunity prediction, which can be measured in a form of a conditional success probability given transmitter-side interference. A transmission probability depen ds on the opportunity prediction, preventing indiscriminate transmissions and reducing excessive interference causing collisions. Using stochastic geometry, we derive a fixed-point equation to provide the optimal transmission probability maximizing a proportionally fair throughput. Its approximated solution is given in closed form. The proposed MAC is applicable to full-duplex networks, leading to significant throughput improvement by allowing more nodes to transmit.
We propose a new class of algorithms for randomly scheduling network transmissions. The idea is to use (discrete) determinantal point processes (subsets) to randomly assign medium access to various {em repulsive} subsets of potential transmitters. Th is approach can be seen as a natural extension of (spatial) Aloha, which schedules transmissions independently. Under a general path loss model and Rayleigh fading, we show that, similarly to Aloha, they are also subject to elegant analysis of the coverage probabilities and transmission attempts (also known as local delay). This is mainly due to the explicit, determinantal form of the conditional (Palm) distribution and closed-form expressions for the Laplace functional of determinantal processes. Interestingly, the derived performance characteristics of the network are amenable to various optimizations of the scheduling parameters, which are determinantal kernels, allowing the use of techniques developed for statistical learning with determinantal processes. Well-established sampling algorithms for determinantal processes can be used to cope with implementation issues, which is is beyond the scope of this paper, but it creates paths for further research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا