ﻻ يوجد ملخص باللغة العربية
We show that the Bardeen-Cooper-Schrieffer state (BCS) and the Bose-Einstein condensation (BEC) sides of the BCS-BEC crossover can be rigorously distinguished from each other by the extrema of the spectrum of the fermionic excitations. Moreover, we demonstrate that this formal distinction is realized as a non-equilibrium phase transition under radio frequency radiation. The BEC phase remains translationally invariant, whereas the BCS phase transforms into the supersolid phase. For a two-dimensional system this effect occurs at arbitrary small amplitude of the radiation field.
We determine the size of the critical region of the superfluid transition in the BCS-BEC crossover of a three-dimensional fermion gas, using a renormalization-group approach to a bosonic theory of pairing fluctuations. For the unitary Fermi gas, we f
Strongly correlated Fermi systems with pairing interactions become superfluid below a critical temperature $T_c$. The extent to which such pairing correlations alter the behavior of the liquid at temperatures $T > T_c$ is a subtle issue that remains
The crossover between low and high density regimes of exciton-polariton condensates is examined using a BCS wavefunction approach. Our approach is an extension of the BEC-BCS crossover theory for excitons, but includes a cavity photon field. The appr
The phase transition to superfluidity and the BCS-BEC crossover for an ultracold gas of fermionic atoms is discussed within a functional renormalization group approach. Non-perturbative flow equations, based on an exact renormalization group equation
We develop a microscopic model to describe the Josephson dynamics between two superfluid reservoirs of ultracold fermionic atoms which accounts for the dependence of the critical current on both the barrier height and the interaction strength along t