ترغب بنشر مسار تعليمي؟ اضغط هنا

RAFT I: Discovery of new planetary candidates and updated orbits from archival FEROS spectra

70   0   0.0 ( 0 )
 نشر من قبل Maritza Soto
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent reanalysis of archival data has lead several authors to arrive at strikingly different conclusions for a number of planet-hosting candidate stars. In particular, some radial velocities measured using FEROS spectra have been shown to be inaccurate, throwing some doubt on the validity of a number of planet detections. Motivated by these results, we have begun the Reanalysis of Archival FEROS specTra (RAFT) program and here we discuss the first results from this work. We have reanalyzed FEROS data for the stars HD 11977, HD 47536, HD 70573, HD 110014 and HD 122430, all of which are claimed to have at least one planetary companion. We have reduced the raw data and computed the radial velocity variations of these stars, achieving a long-term precision of $sim$ 10 m/s on the known stable star tau Ceti, and in good agreement with the residuals to our fits. We confirm the existence of planets around HD 11977, HD 47536 and HD 110014, but with different orbital parameters than those previously published. In addition, we found no evidence of the second planet candidate around HD 47536, nor any companions orbiting HD 122430 and HD 70573. Finally, we report the discovery of a second planet around HD 110014, with a minimum mass of 3.1 Mjup and a orbital period of 130 days. Analysis of activity indicators allow us to confirm the reality of our results and also to measure the impact of magnetic activity on our radial velocity measurements. These results confirm that very metal-poor stars down to [Fe/H]$sim$ -0.7 dex, can indeed form giant planets given the right conditions.

قيم البحث

اقرأ أيضاً

CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) started a new planet survey on M-dwarfs in January this year. The new high-resolution spectrographs are operating in the vis ible and near-infrared at Calar Alto Observatory. They will perform high-accuracy radial-velocity measurements (goal 1 m s-1) of about 300 M-dwarfs with the aim to detect low-mass planets within habitable zones. We characterised the candidate sample for CARMENES and provide fundamental parameters for these stars in order to constrain planetary properties and understand star-planet systems. Using state-of-the-art model atmospheres (PHOENIX-ACES) and chi2-minimization with a downhill-simplex method we determine effective temperature, surface gravity and metallicity [Fe/H] for high-resolution spectra of around 480 stars of spectral types M0.0-6.5V taken with FEROS, CAFE and HRS. We find good agreement between the models and our observed high-resolution spectra. We show the performance of the algorithm, as well as results, parameter and spectral type distributions for the CARMENES candidate sample, which is used to define the CARMENES target sample. We also present first preliminary results obtained from CARMENES spectra.
Given that Campaign 16 of the K2 mission is one of just two K2 campaigns observed so far in forward-facing mode, which enables immediate follow-up observations from the ground, we present a catalog of interesting targets identified through photometry alone. Our catalog includes 30 high-quality planet candidates (showing no signs of being non-planetary in nature), 48 more ambiguous events that may be either planets or false positives, 164 eclipsing binaries, and 231 other regularly periodic variable sources. We have released light curves for all targets in C16, and have also released system parameters and transit vetting plots for all interesting candidates identified in this paper. Of particular interest is a candidate planet orbiting the bright F dwarf HD 73344 (V=6.9, K=5.6) with an orbital period of 15 days. If confirmed, this object would correspond to a $2.56 pm 0.18 R_oplus$ planet and would likely be a favorable target for radial velocity characterization. This paper is intended as a rapid release of planet candidates, eclipsing binaries and other interesting periodic variables to maximize the scientific yield of this campaign, and as a test run for the upcoming TESS mission, whose frequent data releases call for similarly rapid candidate identification and efficient follow-up.
Many exoplanets are discovered in binary star systems in internal or in circumbinary orbits. Whether the planet can be habitable or not depends on the possibility to maintain liquid water on its surface, and therefore on the luminosity of its host st ars and on the dynamical properties of the planetary orbit. The trajectory of a planet in a double star system can be determined, approximating stars and planets with point masses, by solving numerically the equations of motion of the classical three-body system. In this study, we analyze a large data set of planetary orbits, made up with high precision long integration at varying: the mass of the planet, its distance from the primary star, the mass ratio for the two stars in the binary system, and the eccentricity of the star motion. To simulate the gravitational dynamics, we use a 15th order integration scheme (IAS15, available within the REBOUND framework), that provides an optimal solution for long-term integration. In our data analysis, we evaluate if an orbit is stable or not and also provide the statistics of different types of instability: collisions with the primary or secondary star and planets ejected away from the binary star system. Concerning the stability, we find a significant number of orbits that are only marginally stable, according to the classification introduced by Musielak et al. 2005. For planets of negligible mass, we estimate the critical semi-major axis $a_c$ as a function of the mass ratio and the eccentricity of the binary, in agreement with the results of Holman and Wiegert 1999. However, we find that for very massive planets (Super-Jupiters) the critical semi-major axis decrease in some cases by a few percent, compared to cases in which the mass of the planet is negligible.
Reprocessing of the Parkes Multibeam Pulsar Survey has resulted in the discovery of five previously unknown pulsars and several as-yet-unconfirmed candidates. PSR J0922-52 has a period of 9.68 ms and a DM of 122.4 pc cm^-3. PSR J1147-66 has a period of 3.72 ms and a DM of 133.8 pc cm^-3. PSR J1227-6208 has a period of 34.53 ms, a DM of 362.6 pc cm^-3, is in a 6.7 day binary orbit, and was independently detected in an ongoing high-resolution Parkes survey by Thornton et al. and also in independent processing by Einstein@Home volunteers. PSR J1546-59 has a period of 7.80 ms and a DM of 168.3 pc cm^-3. PSR J1725-3853 is an isolated 4.79-ms pulsar with a DM of 158.2 pc cm^-3. These pulsars were likely missed in earlier processing efforts due to their high DMs and short periods and the large number of candidates that needed to be looked through. These discoveries suggest that further pulsars are awaiting discovery in the multibeam survey data.
We used VLT/VIMOS images in the V band to obtain light curves of extrasolar planetary transits OGLE-TR-111 and OGLE-TR-113, and candidate planetary transits: OGLE-TR-82, OGLE-TR-86, OGLE-TR-91, OGLE-TR-106, OGLE-TR-109, OGLE-TR-110, OGLE-TR-159, OGLE -TR-167, OGLE-TR-170, OGLE-TR-171. Using difference imaging photometry, we were able to achieve millimagnitude errors in the individual data points. We present the analysis of the data and the light curves, by measuring transit amplitudes and ephemerides, and by calculating geometrical parameters for some of the systems. We observed 9 OGLE objects at the predicted transit moments. Two other transits were shifted in time by a few hours. For another seven objects we expected to observe transits during the VIMOS run, but they were not detected. The stars OGLE-TR-111 and OGLE-TR-113 are probably the only OGLE objects in the observed sample to host planets, with the other objects being very likely eclipsing binaries or multiple systems. In this paper we also report on four new transiting candidates which we have found in the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا