ﻻ يوجد ملخص باللغة العربية
In light of recent findings from the kinematic morphology-density relation, we investigate whether the same trends exist in the original morphology density relation, using the same data as Dressler. In addition to Dresslers canonical relations, we find that further refinements are possible when considering the average local projected density of galaxies in a cluster. Firstly, the distribution of ellipticals in a cluster depends on the relative local density of galaxies in that cluster: equivalent rises in the elliptical fraction occur at higher local densities for clusters with higher average local densities. This is not true for the late-type fraction, where the variation with local density within a cluster is independent of the average local density of galaxies in that cluster, and is as Dressler originally found. Furthermore, the overall ratio of ellipticals to early-types in a cluster does not depend on the average density of galaxies in that cluster (unlike the ratio of lenticulars to disk systems), and is fixed at around 30%. In the paradigm of fast and slow rotators, we show that such an elliptical fraction in the early-type population is consistent with a slow rotator fraction of 15% in the early-type population, using the statistics of the ATLAS3D survey. We also find the scatter in the overall ratio of ellipticals to early-types is greatest for clusters with lower average densities, such that clusters with the highest elliptical fractions have the lowest average local densities. Finally, we show that average local projected density correlates well with global projected density, but the latter has difficulty in accurately characterising the density of irregular cluster morphologies.
We present the Morphology-Density and Morphology-Radius relations (T-Sigma and T-R, respectively) obtained from the WINGS database of galaxies in nearby clusters. Aiming to achieve the best statistics, we exploit the whole sample of galaxies brighter
The kinematic morphology-density relation for early-type galaxies posits that those galaxies with low angular momentum are preferentially found in the highest-density regions of the universe. We use a large sample of galaxy groups with halo masses 10
We derive the stellar-to-halo mass relation (SHMR), namely $f_starpropto M_star/M_{rm h}$ versus $M_star$ and $M_{rm h}$, for early-type galaxies from their near-IR luminosities (for $M_star$) and the position-velocity distributions of their globular
We present the relation between stellar specific angular momentum $j_*$, stellar mass $M_*$, and bulge-to-total light ratio $beta$ for THINGS, CALIFA and Romanowsky & Fall datasets, exploring the existence of a fundamental plane between these paramet
Recent large surveys have found a reversal of the star formation rate (SFR)-density relation at z=1 from that at z=0 (e.g. Elbaz et al.; Cooper et al.), while the sign of the slope of the color-density relation remains unchanged (e.g. Cucciati et al.