ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid quantum logic and a test of Bells inequality using two different atomic isotopes

92   0   0.0 ( 0 )
 نشر من قبل David Lucas
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement is one of the most fundamental properties of quantum mechanics, and is the key resource for quantum information processing. Bipartite entangled states of identical particles have been generated and studied in several experiments, and post-selected or heralded entangled states involving pairs of photons, single photons and single atoms, or different nuclei in the solid state, have also been produced. Here, we use a deterministic quantum logic gate to generate a hybrid entangled state of two trapped-ion qubits held in different isotopes of calcium, perform full tomography of the state produced, and make a test of Bells inequality with non-identical atoms. We use a laser-driven two-qubit gate, whose mechanism is insensitive to the qubits energy splittings, to produce a maximally-entangled state of one Ca-40 qubit and one Ca-43 qubit, held 3.5 microns apart in the same ion trap, with 99.8(6)% fidelity. We test the Clauser-Horne-Shimony-Holt (CHSH) version of Bells inequality for this novel entangled state and find that it is violated by 15 standard deviations; in this test, we close the detection loophole but not the locality loophole. Mixed-species quantum logic is a powerful technique for the construction of a quantum computer based on trapped ions, as it allows protection of memory qubits while other qubits undergo logic operations, or are used as photonic interfaces to other processing units. The entangling gate mechanism used here can also be applied to qubits stored in different atomic elements; this would allow both memory and logic gate errors due to photon scattering to be reduced below the levels required for fault-tolerant quantum error correction, which is an essential pre-requisite for general-purpose quantum computing.



قيم البحث

اقرأ أيضاً

We analyze a possibility of using the two qubit output state from Buzek-Hillery quantum copying machine (not necessarily universal quantum cloning machine) as a teleportation channel. We show that there is a range of values of the machine parameter $ xi$ for which the two qubit output state is entangled and violates Bell-CHSH inequality and for a different range it remains entangled but does not violate Bell-CHSH inequality. Further we observe that for certain values of the machine parameter the two-qubit mixed state can be used as a teleportation channel. The use of the output state from the Buzek-Hillery cloning machine as a teleportation channel provides an additional appeal to the cloning machine and motivation of our present work.
We study the speed/fidelity trade-off for a two-qubit phase gate implemented in $^{43}$Ca$^+$ hyperfine trapped-ion qubits. We characterize various error sources contributing to the measured fidelity, allowing us to account for errors due to single-q ubit state preparation, rotation and measurement (each at the $sim0.1%$ level), and to identify the leading sources of error in the two-qubit entangling operation. We achieve gate fidelities ranging between $97.1(2)%$ (for a gate time $t_g=3.8mu$s) and $99.9(1)%$ (for $t_g=100mu$s), representing respectively the fastest and lowest-error two-qubit gates reported between trapped-ion qubits by nearly an order of magnitude in each case.
127 - Arun Kumar Pati 1998
We propose the Aharonov-Casher (AC) effect for four entangled spin-half particles carrying magnetic moments in the presence of impenetrable line charge. The four particle state undergoes AC phase shift in two causually disconnected region which can s how up in the correlations between different spin states of distant particles. This correlation can violate Bells inequality, thus displaying the non-locality for four particle entangled states in an objective way. Also, we have suggested how to control the AC phase shift locally at two distant locations to test Bells inequality. We belive that although the single particle AC effect may not be non-local but the entangled state AC effect is a non-local one.
The interaction of competing agents is described by classical game theory. It is now well known that this can be extended to the quantum domain, where agents obey the rules of quantum mechanics. This is of emerging interest for exploring quantum foun dations, quantum protocols, quantum auctions, quantum cryptography, and the dynamics of quantum cryptocurrency, for example. In this paper, we investigate two-player games in which a strategy pair can exist as a Nash equilibrium when the games obey the rules of quantum mechanics. Using a generalized Einstein-Podolsky-Rosen (EPR) setting for two-player quantum games, and considering a particular strategy pair, we identify sets of games for which the pair can exist as a Nash equilibrium only when Bells inequality is violated. We thus determine specific games for which the Nash inequality becomes equivalent to Bells inequality for the considered strategy pair.
135 - I. I. Beterov , M. Saffman 2015
We calculate interspecies Rydberg-Rydberg interaction strengths for the heavy alkalis Rb and Cs. The presence of strong Forster resonances makes interspecies coupling a promising approach for long range entanglement generation. We also provide an ove rview of the strongest Forster resonances for Rb-Rb and Cs-Cs using different principal quantum numbers for the two atoms. We show how interspecies coupling can be used for high fidelity quantum non demolition state measurements with low crosstalk in qubit arrays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا