ترغب بنشر مسار تعليمي؟ اضغط هنا

Bloch Wave Function for the Periodic Sphaleron Potential and Unsuppressed Baryon and Lepton Number Violating Processes

111   0   0.0 ( 0 )
 نشر من قبل Sung Ching Sam Wong
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For the periodic sphaleron potential in the electroweak theory, we find the one-dimensional time-independent Schr{o}dinger equation with the Chern-Simons number as the coordinate, construct the Bloch wave function and determine the corresponding conducting (pass) band structure. We show that the baryon-lepton number violating processes can take place without the exponential tunneling suppression (at zero temperature) at energies around and above the barrier height (sphaleron energy) at 9.0 TeV. Phenomenologically, probable detection of such processes at LHC is discussed.



قيم البحث

اقرأ أيضاً

We search for lepton-number- and baryon-number-violating decays $tau^{-}tooverline{p}e^{+}e^{-}$, $pe^{-}e^{-}$, $overline{p}e^{+}mu^{-}$, $overline{p}e^{-}mu^{+}$, $overline{p}mu^{+}mu^{-}$, and $pmu^{-}mu^{-}$ using 921 fb$^{-1}$ of data, equivalen t to $(841pm12)times 10^6$ $tau^{+}tau^{-}$ events, recorded with the Belle detector at the KEKB asymmetric-energy $e^{+}e^{-}$ collider. In the absence of a signal, $90%$ confidence-level upper limits are set on the branching fractions of these decays in the range $(1.8$-$4.0)times 10^{-8}$. We set the worlds first limits on the first four channels and improve the existing limits by an order of magnitude for the last two channels.
In the Bloch-wave approach to estimate the baryon-number-violating scattering cross section in the standard electroweak theory in the laboratory, we clarify the relation between the single sphaleron barrier and multiple (near periodic) sphaleron barr ier cases. We explain how a realistic consideration modifies/corrects the idealized Bloch wave and the resonant tunneling approximation. The basic approach is in part analogous to the well-known triple-$alpha$ process to form carbon in nucleosynthesis.
We discuss the constraints of lepton mixing angles from lepton number violating processes such as neutrinoless double beta decay, (mu^-)-(e^+) conversion and K decay, $K^- to pi^+mu^-mu^-$ which are allowed only if neutrinos are Majorana particles. T he rates of these processes are proportional to the averaged neutrino mass defined by $<m_{ u} >_{a b}equiv |sum_{j=1}^{3}U_{a j} U_{b j}m_j|$ in the absence of right-handed weak coupling. Here $a, b (j)$ are flavour(mass) eigen states and $U_{a j}$ is the left-handed lepton mixing matrix. We obtain the consistency conditions which are satisfied irrelevant to the concrete values of CP violation phases (three phases in Majorana neutrinos). These conditions constrain the lepton mixing angles, neutrino masses $m_i$ and (< m_{ u} >_{a b}). By using these constraints we obtain the limits on the averaged neutrino masses for (mu^-)-(e^+) conversion and K decay, $K^- to pi^+mu^-mu^-$.
We develop the consequences of introducing a purely leptonic, lepton number violating non-standard interaction (NSI) and standard model neutrino mixing with a fourth, sterile neutrino in the analysis of short-baseline, neutrino experiments. We focus on the muon decay at rest (DAR) result from the Liquid Scintillation Neutrino Experiment (LSND) and the Karlsruhe and Rutherford Medium Energy Neutrino Experiment (KARMEN). We make a comprehensive analysis of lepton number violating, NSI effective operators and find nine that affect muon decay relevant to LSND results. Two of these preserve the standard model (SM) value 3/4 for the Michel rho and delta parameters and, overall, show favorable agreement with precision data and the electron anti-neutrino signal from LSND data. We display theoretical models that lead to these two effective operators. In the model we choose to apply to DAR data, both electron anti-neutrino appearance from muon anti-neutrino oscillation and electron anti-neutrino survival after production from NSI decay of the positive muon contribute to the expected signal. This is a unique feature of our scheme. We find a range of parameters where both experiments can be accommodated consistently with recent global, sterile neutrino fits to short baseline data. We comment on implications of the models for new physics searches at colliders and comment on further implications of the lepton number violating interactions plus sterile neutrino-standard model neutrino mixing.
We explore the generation of the baryon asymmetry in an extension of the Standard Model where the lepton number is promoted to a $U(1)_ell$ gauge symmetry with an associated $Z^prime$ gauge boson. This is based on a novel electroweak baryogenesis mec hanism first proposed by us in Ref. cite{Carena:2018cjh}. Extra fermionic degrees of freedom - including a fermionic dark matter $chi$ - are introduced in the dark sector for anomaly cancellation. Lepton number is spontaneously broken at high scale and the effective theory, containing the Standard Model, the $Z^prime$, the fermionic dark matter, and an additional complex scalar field $S$, violates CP in the dark sector. The complex scalar field couples to the Higgs portal and is essential in enabling a strong first order phase transition. Dark CP violation is diffused in front of the bubble walls and creates a chiral asymmetry for $chi$, which in turn creates a chemical potential for the Standard Model leptons. Weak sphalerons are then in charge of transforming the net lepton charge asymmetry into net baryon number. We explore the model phenomenology related to the leptophilic $Z^prime$, the dark matter candidate, the Higgs boson and the additional scalar, as well as implications for electric dipole moments. We also discuss the case when baryon number $U(1)_B$ is promoted to a gauge symmetry, and discuss electroweak baryogenesis and its corresponding phenomenology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا