ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep NuSTAR and Swift Monitoring Observations of the Magnetar 1E 1841-045

222   0   0.0 ( 0 )
 نشر من قبل Hongjun An
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a 350-ks NuSTAR observation of the magnetar 1E 1841-045 taken in 2013 September. During the observation, NuSTAR detected six bursts of short duration, with $T_{90}<1$ s. An elevated level of emission tail is detected after the brightest burst, persisting for $sim$1 ks. The emission showed a power-law decay with a temporal index of 0.5 before returning to the persistent emission level. The long observation also provided detailed phase-resolved spectra of the persistent X-ray emission of the source. By comparing the persistent spectrum with that previously reported, we find that the source hard-band emission has been stable over approximately 10 years. The persistent hard X-ray emission is well fitted by a coronal outflow model, where $e^{+/-}$ pairs in the magnetosphere upscatter thermal X-rays. Our fit of phase-resolved spectra allowed us to estimate the angle between the rotational and magnetic dipole axes of the magnetar, $alpha_{mag}=0.25$, the twisted magnetic flux, $2.5times10^{26}rm G cm^2$, and the power released in the twisted magnetosphere, $L_j=6times10^{36}rm erg s^{-1}$. Assuming this model for the hard X-ray spectrum, the soft X-ray component is well fit by a two-blackbody model, with the hotter blackbody consistent with the footprint of the twisted magnetic field lines on the star. We also report on the 3-year Swift monitoring observations obtained since 2011 July. The soft X-ray spectrum remained stable during this period, and the timing behavior was noisy, with large timing residuals.

قيم البحث

اقرأ أيضاً

103 - Julia K. Vogel 2014
We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, an d cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double-blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggests that an additional component, such as a power-law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap.
We report the detection of eight bright X-ray bursts from the 6.5-s magnetar 1E 1048.1-5937, during a 2013 July observation campaign with the Nuclear Spectroscopic Telescope Array (NuSTAR). We study the morphological and spectral properties of these bursts and their evolution with time. The bursts resulted in count rate increases by orders of magnitude, sometimes limited by the detector dead time, and showed blackbody spectra with kT=6-8 keV in the T90 duration of 1-4 s, similar to earlier bursts detected from the source. We find that the spectra during the tail of the bursts can be modeled with an absorbed blackbody with temperature decreasing with flux. The bursts flux decays followed a power-law of index 0.8-0.9. In the burst tail spectra, we detect a ~13 keV emission feature, similar to those reported in previous bursts from this source as well as from other magnetars observed with the Rossi X-ray Timing Explorer (RXTE). We explore possible origins of the spectral feature such as proton cyclotron emission, which implies a magnetic field strength of B~2X10^15 G in the emission region. However, the consistency of the energy of the feature in different objects requires further explanation.
245 - Wenwu Tian , Denis A. Leahy 2008
We provide a new distance estimate to the supernova remnant (SNR) Kes 73 and its associated anomalous X-ray pulsar (AXP) 1E 1841-045. 21 cm HI images and HI absorption/ emission spectra from new VLA observations, and 13CO emission spectra of Kes 73 a nd two adjacent compact HII regions (G27.276+0.148 and G27.491+0.189) are analyzed. The HI images show prominent absorption features associated with Kes 73 and the HII regions. The absorption appears up to the tangent point velocity giving a lower distance limit to Kes 73 of 7.5 kpc, which has previously been given as the upper limit. Also, G27.276+0.148 and G27.491+0.189 are at the far kinematic distances of their radio recombination line velocities. There is prominent HI emission in the range 80--90 km/s for all three objects. The two HII regions show HI absorption at ~ 84 km/s, but there is no absorption in the Kes 73 absorption spectrum. This implies an upper distance limit of ~ 9.8 kpc to Kes 73. This corrected larger distance to Kes 73/ AXP 1E 1841-045 system leads to a refined age of the SNR of 500 to 1000 yr, and a ~ 50% larger AXP X-ray luminosity.
Swift/BAT detected the first burst from 1E 1841-045 in May 2010 with intermittent burst activity recorded through at least July 2011. Here we present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the per sistent X-ray emission of the source. The T90 durations of the bursts range between 18-140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8 - 25)E38 erg, which is in the low side of SGR bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in 1E 1841-045 might not involve large scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.
New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100x larger than during its dormant state. The X-ray flux one month after reactivation was at least 800x larger than during quiescence, and has been decaying exponentially on a 111+/-19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا