ﻻ يوجد ملخص باللغة العربية
We analyze the dependence of the stellar disc flatness on the galaxy morphological type using 2D decomposition of galaxies from the reliable subsample of the Edge-on Galaxies in SDSS (EGIS) catalogue. Combining these data with the retrieved models of the edge-on galaxies from the Two Micron All Sky Survey (2MASS) and the Spitzer Survey of Stellar Structure in Galaxies (S$^4$G) catalogue, we make the following conclusions: (1) The disc relative thickness $z_0/h$ in the near- and mid-infrared passbands correlates weakly with morphological type and does not correlate with the bulge-to-total luminosity ratio $B/T$ in all studied bands. (2) Applying an 1D photometric profile analysis overestimates the disc thickness in galaxies with large bulges making an illusion of the relationship between the disc flattening and the ratio $B/T$. (3) In our sample the early-type disc galaxies (S0/a) have both flat and puffed discs. The early spirals and intermediate-type galaxies have a large scatter of the disc flatness, which can be caused by the presence of a bar: barred galaxies have thicker stellar discs, on average. On the other hand, the late-type spirals are mostly thin galaxies, whereas irregular galaxies have puffed stellar discs.
Possible connections between central black-hole (BH) growth and host-galaxy compactness have been found observationally, which may provide insight into BH-galaxy coevolution: compact galaxies might have large amounts of gas in their centers due to th
Small kinematically-decoupled stellar discs with scalelengths of a few tens of parsec are known to reside in the centre of galaxies. Different mechanisms have been proposed to explain how they form, including gas dissipation and merging of globular c
We explore the chemical distribution of stars in a simulated galaxy. Using simulations of the same initial conditions but with two different feedback schemes (MUGS and MaGICC), we examine the features of the age-metallicity relation (AMR), and the th
We revisit the correlation between the mid-infrared (6 $mu$m) and hard X-ray (2--10 keV) luminosities of active galactic nuclei (AGNs) to understand the physics behind it. We construct an X-ray flux-limited sample of 571 type 1 AGNs with $f_{0.5-2.0
We discuss in the framework of the excursion set formalism a recent discovery from N-body simulations that the clustering of haloes of given mass depends on their formation history. We review why the standard implementation of this formalism is unabl