ترغب بنشر مسار تعليمي؟ اضغط هنا

Early Cosmic Merger of Multiple Black Holes

89   0   0.0 ( 0 )
 نشر من قبل Hiromichi Tagawa
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform numerical simulations on the merger of multiple black holes (BHs) in primordial gas at early cosmic epochs. We consider two cases of BH mass: $M_{BH} = 30 M_{odot}$ and $M_{BH} = 10^4 M_{odot}$. Attention is concentrated on the effect of the dynamical friction by gas in a host object. The simulations incorporate such general relativistic effects as the pericentre shift and gravitational wave emission. As a result, we find that multiple BHs are able to merge into one BH within 100 Myr in a wide range of BH density. The merger mechanism is revealed to be categorized into three types: gas-drag-driven merger (type A), interplay-driven merger (type B), and three-body-driven merger (type C). We find the relation between the merger mechanism and the ratio of the gas mass within the initial BH orbit ($M_{gas}$) to the total BH mass (${Sigma}M_{BH}$). Type A merger occurs if $M_{gas} gtrsim 10^5 {Sigma}M_{BH}$, type B if $M_{gas} lesssim 10^5 {Sigma}M_{BH}$, and type C if $M_{gas} ll 10^5 {Sigma}M_{BH}$. Supposing the gas and BH density based on the recent numerical simulations on first stars, all the BH remnants from first stars are likely to merge into one BH through the type B or C mechanism. Also, we find that multiple massive BHs ($M_{BH} = 10^4 M_{odot}$) distributed over several parsec can merge into one BH through the type B mechanism, if the gas density is higher than $5times 10^6$ cm$^{-3}$. The present results imply that the BH merger may contribute significantly to the formation of supermassive BHs at high redshift epochs.

قيم البحث

اقرأ أيضاً

227 - G. Martin 2018
Understanding the processes that drive the formation of black holes (BHs) is a key topic in observational cosmology. While the observed $M_{mathrm{BH}}$--$M_{mathrm{Bulge}}$ correlation in bulge-dominated galaxies is thought to be produced by major m ergers, the existence of a $M_{mathrm{BH}}$--$M_{star}$ relation, across all galaxy morphological types, suggests that BHs may be largely built by secular processes. Recent evidence that bulge-less galaxies, which are unlikely to have had significant mergers, are offset from the $M_{mathrm{BH}}$--$M_{mathrm{Bulge}}$ relation, but lie on the $M_{mathrm{BH}}$--$M_{star}$ relation, has strengthened this hypothesis. Nevertheless, the small size and heterogeneity of current datasets, coupled with the difficulty in measuring precise BH masses, makes it challenging to address this issue using empirical studies alone. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation to probe the role of mergers in BH growth over cosmic time. We show that (1) as suggested by observations, simulated bulge-less galaxies lie offset from the main $M_{mathrm{BH}}$--$M_{mathrm{Bulge}}$ relation, but on the $M_{mathrm{BH}}$--$M_{star}$ relation, (2) the positions of galaxies on the $M_{mathrm{BH}}$--$M_{star}$ relation are not affected by their merger histories and (3) only $sim$35 per cent of the BH mass in todays massive galaxies is directly attributable to merging -- the majority ($sim$65 per cent) of BH growth, therefore, takes place gradually, via secular processes, over cosmic time.
An extraordinary recent development in astrophysics was the discovery of the fossil relationship between central black hole mass and the stellar mass of galactic bulges. The physical process underpinning this relationship has become known as feedback . The Chandra X-ray Observatory was instrumental in realizing the physical basis for feedback, by demonstrating a tight coupling between the energy released by supermassive black holes and the gaseous structures surrounding them. This white paper discusses how a great leap forward in X-ray collecting area and spectral resolution will allow a qualitatively new way of studying how feedback from black holes influenced the growth of structure.
263 - Huiquan Li , Jiancheng Wang 2020
We discuss the merger process of binary black holes with Hawking radiation taken into account. Besides the redshifted radiation to infinity, binary black holes can exchange radiation between themselves, which is first redshifted and then blueshifted when it propagates from one hole to the other. The exchange rate should be large when the temperature-divergent horizons are penetrating each other to form a single horizon with unique temperature. This will cause non-negligible mass and angular momentum transfer between the black holes during the merging process of the horizons. We further argue in the large mass ratio limit that the light hole whose local evaporation is enhanced by the competing redshift-blueshift effects will probably evaporate or decay completely before reaching the the horizon of the heavy one. We also discuss the possibility of testing Hawking radiation and even exploring the information loss puzzle in gravitational wave observations.
One of the main themes in extragalactic astronomy for the next decade will be the evolution of galaxies over cosmic time. Many future observatories, including JWST, ALMA, GMT, TMT and E-ELT will intensively observe starlight over a broad redshift ran ge, out to the dawn of the modern Universe when the first galaxies formed. It has, however, become clear that the properties and evolution of galaxies are intimately linked to the growth of their central black holes. Understanding the formation of galaxies, and their subsequent evolution, will therefore be incomplete without similarly intensive observations of the accretion light from supermassive black holes (SMBH) in galactic nuclei. To make further progress, we need to chart the formation of typical SMBH at z>6, and their subsequent growth over cosmic time, which is most effectively achieved with X-ray observations. Recent technological developments in X-ray optics and instrumentation now bring this within our grasp, enabling capabilities fully matched to those expected from flagship observatories at longer wavelengths.
128 - R. Gilli , F. Calura , A. DErcole 2017
We addressed the so far unexplored issue of outflows induced by exponentially growing power sources, focusing on early supermassive black holes (BHs). We assumed that these objects grow to $10^9;M_{odot}$ by z=6 by Eddington-limited accretion and con vert 5% of their bolometric output into a wind. We first considered the case of energy-driven and momentum-driven outflows expanding in a region where the gas and total mass densities are uniform and equal to the average values in the Universe at $z>6$. We derived analytic solutions for the evolution of the outflow, finding that, for an exponentially growing power with e-folding time $t_{Sal}$, the late time expansion of the outflow radius is also exponential, with e-folding time of $5t_{Sal}$ and $4t_{Sal}$ in the energy-driven and momentum-driven limit, respectively. We then considered energy-driven outflows produced by QSOs at the center of early dark matter halos of different masses and powered by BHs growing from different seeds. We followed the evolution of the source power and of the gas and dark matter density profiles in the halos from the beginning of the accretion until $z=6$. The final bubble radius and velocity do not depend on the seed BH mass but are instead smaller for larger halo masses. At z=6, bubble radii in the range 50-180 kpc and velocities in the range 400-1000 km s$^{-1}$ are expected for QSOs hosted by halos in the mass range $3times10^{11}-10^{13};M_{odot}$. By the time the QSO is observed, we found that the total thermal energy injected within the bubble in the case of an energy-driven outflow is $E_{th}sim5 times 10^{60}$ erg. This is in excellent agreement with the value of $E_{th}=(6.2pm 1.7)times 10^{60}$ erg measured through the detection of the thermal Sunyaev-Zeldovich effect around a large population of luminous QSOs at lower redshift. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا