ﻻ يوجد ملخص باللغة العربية
The adiabatic projection method is a general framework for studying scattering and reactions on the lattice. It provides a low-energy effective theory for clusters which becomes exact in the limit of large Euclidean projection time. Previous studies have used the adiabatic projection method to extract scattering phase shifts from finite periodic-box energy levels using Luschers method. In this paper we demonstrate that scattering observables can be computed directly from asymptotic cluster wave functions. For a variety of examples in one and three spatial dimensions, we extract elastic phase shifts from asymptotic cluster standing waves corresponding to spherical wall boundary conditions. We find that this approach of extracting scattering wave functions from the adiabatic Hamiltonian to be less sensitive to small stochastic and systematic errors as compared with using periodic-box energy levels.
We use microscopic 9Be wave functions defined in a alpha+alpha+n multicluster model to compute 9Be+target scattering cross sections. The parameter sets describing 9Be are generated in the spirit of the Stochastic Variational Method (SVM), and the opt
We consider the breaking of Galilean invariance due to different lattice cutoff effects in moving frames and a nonlocal smearing parameter which is used in the construction of the nuclear lattice interaction. The dispersion relation and neutron-proto
Angular momentum projection is used to obtain eigen states of angular momentum from general wave functions. Multi-configuration mixing calculation with angular momentum projection is an important microscopic method in nuclear physics. For accurate mu
The light-front wave functions of hadrons allow us to calculate a wide range of physical observables; however, the wave functions themselves cannot be measured. We discuss recent results for quarkonia obtained in basis light-front quantization using
Projection Monte Carlo calculations of lattice Chiral Effective Field Theory suffer from sign oscillations to a varying degree dependent on the number of protons and neutrons. Hence, such studies have hitherto been concentrated on nuclei with equal n