ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck intermediate results. XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium

92   0   0.0 ( 0 )
 نشر من قبل Tuhin Ghosh
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. We present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder, we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2deg (corresponding to 3.5 pc in length for a typical distance of 100 pc). These filaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11 %. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the $C_{ell}^{TE}/C_{ell}^{EE}$ ratio, reported in the power spectra analysis of the Planck 353 GHz polarization maps. Future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter.

قيم البحث

اقرأ أيضاً

The analysis of the Planck polarization E and B mode power spectra of interstellar dust emission at 353 GHz recently raised new questions on the impact of Galactic foregrounds to the detection of the polarization of the Cosmic Microwave Background (C MB) and on the physical properties of the interstellar medium (ISM). In the diffuse ISM a clear E-B asymmetry is observed, with twice as much power in E modes than in B modes; as well as a positive correlation between the total power, T, and both E and B modes, presently interpreted in terms of the link between the structure of interstellar matter and that of the Galactic magnetic field. In this paper we aim at extending the Planck analysis of the high-latitude sky to low Galactic latitude, investigating the correlation between the TEB power spectra with the gas column density from the diffuse ISM to molecular clouds. We divide the sky between Galactic latitude |b|>5 deg and |b|<60 deg in 552 circular patches and we study the cross-correlations between the TEB power spectra and the column density of each patch using the latest release of the Planck polarization data. We find that the B-to-E power ratio (BB/EE) and the TE correlation ratio (rTE) depend on column density. While the former increases going from the diffuse ISM to molecular clouds in the Gould Belt, the latter decreases. This systematic variation must be related to actual changes in ISM properties. The data show significant scatter about this mean trend. The variations of BB/EE and rTE are observed to be anti-correlated for all column densities. In the diffuse ISM, the variance of these two ratios is consistent with a stochastic non-Gaussian model in which the values of BB/EE and rTE are fixed. We finally discuss the dependencies of TB and EB with column density, which are however hampered by instrumental noise.
Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them with the Planck and WMAP data a t 12 frequencies from 23 to 353 GHz, over circular patches with 10 degree radius. The cross-correlation analysis is performed for both intensity and polarization data in a consistent manner. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each sky-patch. The mean values, $1.59pm0.02$ for polarization and $1.51pm0.01$ for intensity, for a mean dust temperature of 19.6 K, are close, but significantly different ($3.6,sigma$). We determine the mean spectral energy distribution (SED) of the microwave emission, correlated with the 353 GHz dust templates, by averaging the results of the correlation over all sky-patches. We find that the mean SED increases for decreasing frequencies at $ u < 60$ GHz, for both intensity and polarization. The rise of the polarization SED towards low frequencies may be accounted for by a synchrotron component correlated with dust, with no need for any polarization of the anomalous microwave emission. We use a spectral model to separate the synchrotron and dust polarization and to characterize the spectral dependence of the dust polarization fraction. The polarization fraction ($p$) of the dust emission decreases by $(21pm6)$ % from 353 to 70 GHz. The decrease of $p$ could indicate differences in polarization efficiency among components of interstellar dust (e.g., carbon versus silicate grains). Our observational results provide inputs to quantify and optimize the separation between Galactic and cosmological polarization.
The dust-HI correlation is used to characterize the emission properties of dust in the diffuse interstellar medium. We cross-correlate sky maps from Planck, WMAP, and DIRBE, at 17 frequencies from 23 to 3000 GHz, with the Parkes survey of the 21-cm l ine emission of neutral atomic hydrogen, over a contiguous area of 7500 deg$^2$ centred on the southern Galactic pole. Our analysis yields four specific results. (1) The dust temperature is observed to be anti-correlated with the dust emissivity and opacity. We interpret this result as evidence for dust evolution within the diffuse ISM. The mean dust opacity is measured to be $(7.1 pm 0.6) 10^{-27} cm^2/H times ( u/353, GHz)^{1.53pm0.03}$ for $100 < u <353$GHz. (2) We map the spectral index of dust emission at millimetre wavelengths, which is remarkably constant at $beta_{mm} = 1.51pm 0.13$. We compare it with the far infrared spectral index beta_FIR derived from greybody fits at higher frequencies, and find a systematic difference, $beta_{mm}-beta_{FIR} = -0.15$, which suggests that the dust SED flattens at $ u < 353,$GHz. (3) We present spectral fits of the microwave emission correlated with HI from 23 to 353 GHz, which separate dust and anomalous microwave emission. The flattening of the dust SED can be accounted for with an additional component with a blackbody spectrum, which accounts for $(26 pm 6)$% of the dust emission at 100 GHz and could represent magnetic dipole emission. Alternatively, it could account for an increasing contribution of carbon dust, or a flattening of the emissivity of amorphous silicates, at millimetre wavelengths. These interpretations make different predictions for the dust polarization SED. (4) We identify a Galactic contribution to the residuals of the dust-HI correlation, which we model with variations of the dust emissivity on angular scales smaller than that of our correlation analysis.
Planck observations at 353GHz provide the first fully-sampled maps of the polarized dust emission towards interstellar filaments and their backgrounds. The polarization data provide insight on the structure of their magnetic field (B). We present the polarization maps of three nearby star forming filament of moderate column density (NH~10^22cm^-2): Musca, B211, and L1506. We use the spatial information to separate Stokes I, Q, and U of the filaments from those of their backgrounds, an essential step to measure the intrinsic polarization fraction (p) and angle (psi) of each emission component. We find that the polarization angles in the three filaments (psi_fil) are coherent along their lengths and not the same as in their backgrounds (psi_bg). The differences between psi_fil and psi_bg are 12deg, 6deg, and 54deg for Musca, B211, and L1506, respectively. These differences for Musca and L1506 are larger than the dispersions of psi, both along the filaments and in their backgrounds. The observed changes of psi are direct evidence for variations of the orientation of the plane of the sky (POS) projection of the B-field. As in previous studies, we find a decrease of several percent of p with NH. We show that the drop in p cannot be explained by random fluctuations of the orientation of B within the filaments because they are too small (sigma_psi<10deg). We recognize the degeneracy between dust alignment efficiency and the structure of B in causing variations in p, but we argue that the decrease of p from the backgrounds to the filaments results in part from depolarization associated with the 3D structure of B: both its orientation in the POS and with respect to the POS. We do not resolve the inner structure of the filaments, but at the smallest scales accessible with Planck (~0.2pc), the observed changes of psi and p hold information on the B-field structure within filaments.
We study the statistical properties of interstellar dust polarization at high Galactic latitude, using the Stokes parameter Planck maps at 353 GHz. Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a model of the polarized dust foreground for cosmic microwave background component-separation procedures. Focusing on the southern Galactic cap, we examine the statistical distributions of the polarization fraction ($p$) and angle ($psi$) to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. We relate patterns at large angular scales in polarization to the orientation of the mean (ordered) GMF towards Galactic coordinates $(l_0,b_0)=(70^circ pm 5^circ,24^circ pm 5^circ)$. The histogram of $p$ shows a wide dispersion up to 25 %. The histogram of $psi$ has a standard deviation of $12^circ$ about the regular pattern expected from the ordered GMF. We use these histograms to build a phenomenological model of the turbulent component of the GMF, assuming a uniform effective polarization fraction ($p_0$) of dust emission. To model the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of $N$ independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed $p$ and $psi$ distributions using: a $p_0$ value of (26 $pm$ 3)%; a ratio of 0.9 $pm$ 0.1 between the strengths of the turbulent and mean components of the GMF; and a small value of $N$. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا